Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-2187x+17766\)
|
(homogenize, simplify) |
\(y^2z=x^3-2187xz^2+17766z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2187x+17766\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(-50, 46\right)\)
|
$\hat{h}(P)$ | ≈ | $2.7298485579550391527016207490$ |
Torsion generators
\( \left(42, 0\right) \)
Integral points
\((-50,\pm 46)\), \( \left(42, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 8280 \) | = | $2^{3} \cdot 3^{2} \cdot 5 \cdot 23$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $533110118400 $ | = | $2^{11} \cdot 3^{9} \cdot 5^{2} \cdot 23^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{28697814}{13225} \) | = | $2 \cdot 3^{15} \cdot 5^{-2} \cdot 23^{-2}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.94489886062954333837668380351\dots$ | ||
Stable Faltings height: | $-0.51444527138482213046887956885\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $2.7298485579550391527016207490\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.82845558675985639309958052028\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 4.5231165776923796037203438943 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 7680 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | Additive | -1 | 3 | 11 | 0 |
$3$ | $2$ | $III^{*}$ | Additive | 1 | 2 | 9 | 0 |
$5$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
$23$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image of the adelic Galois representation has level $2760$, index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1844 & 1 \\ 919 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2757 & 4 \\ 2756 & 5 \end{array}\right),\left(\begin{array}{rr} 1657 & 4 \\ 554 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1379 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1036 & 1729 \\ 345 & 2416 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1201 & 4 \\ 2402 & 9 \end{array}\right)$
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | split | ss | ord | ord | ord | ord | nonsplit | ord | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | - | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 8280p
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$4$ | 4.4.11426400.1 | \(\Z/4\Z\) | Not in database |
$8$ | 8.8.8356007485440000.8 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.2.391687850880000.6 | \(\Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.