Learn more

Refine search


Results (48 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
8280.a1 8280.a \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 68532, -30368108]$ \(y^2=x^3+68532x-30368108\)
8280.b1 8280.b \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12123, -497178]$ \(y^2=x^3-12123x-497178\)
8280.b2 8280.b \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 297, -27702]$ \(y^2=x^3+297x-27702\)
8280.c1 8280.c \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $1.512683736$ $[0, 0, 0, -13203, 583902]$ \(y^2=x^3-13203x+583902\)
8280.c2 8280.c \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $0.756341868$ $[0, 0, 0, -783, 10098]$ \(y^2=x^3-783x+10098\)
8280.d1 8280.d \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\mathsf{trivial}$ $2.500485856$ $[0, 0, 0, -1683, -26757]$ \(y^2=x^3-1683x-26757\)
8280.e1 8280.e \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\mathsf{trivial}$ $0.653702497$ $[0, 0, 0, -3, 623]$ \(y^2=x^3-3x+623\)
8280.f1 8280.f \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $6.322655678$ $[0, 0, 0, -4668483, -3882494882]$ \(y^2=x^3-4668483x-3882494882\)
8280.f2 8280.f \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $3.161327839$ $[0, 0, 0, -288363, -62154218]$ \(y^2=x^3-288363x-62154218\)
8280.g1 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $3.572859251$ $[0, 0, 0, -7837923, 8148740222]$ \(y^2=x^3-7837923x+8148740222\)
8280.g2 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.145718502$ $[0, 0, 0, -1276923, -384496378]$ \(y^2=x^3-1276923x-384496378\)
8280.g3 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $14.29143700$ $[0, 0, 0, -1164423, -483563878]$ \(y^2=x^3-1164423x-483563878\)
8280.g4 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $7.145718502$ $[0, 0, 0, -1164378, -483603127]$ \(y^2=x^3-1164378x-483603127\)
8280.g5 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $28.58287400$ $[0, 0, 0, -1052643, -580119442]$ \(y^2=x^3-1052643x-580119442\)
8280.g6 8280.g \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $14.29143700$ $[0, 0, 0, 3484077, -2577412978]$ \(y^2=x^3+3484077x-2577412978\)
8280.h1 8280.h \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -243, -658]$ \(y^2=x^3-243x-658\)
8280.h2 8280.h \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -123, 518]$ \(y^2=x^3-123x+518\)
8280.i1 8280.i \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.515081072$ $[0, 0, 0, 132, -3292]$ \(y^2=x^3+132x-3292\)
8280.j1 8280.j \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\mathsf{trivial}$ $3.125671367$ $[0, 0, 0, 13212, 76788]$ \(y^2=x^3+13212x+76788\)
8280.k1 8280.k \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $0.727058915$ $[0, 0, 0, -18, 17]$ \(y^2=x^3-18x+17\)
8280.k2 8280.k \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $1.454117830$ $[0, 0, 0, 57, 122]$ \(y^2=x^3+57x+122\)
8280.l1 8280.l \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8643, 254558]$ \(y^2=x^3-8643x+254558\)
8280.l2 8280.l \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1077, 23222]$ \(y^2=x^3+1077x+23222\)
8280.m1 8280.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1467, -21626]$ \(y^2=x^3-1467x-21626\)
8280.m2 8280.m \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -87, -374]$ \(y^2=x^3-87x-374\)
8280.n1 8280.n \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $0.563655125$ $[0, 0, 0, -1347, 18414]$ \(y^2=x^3-1347x+18414\)
8280.n2 8280.n \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $0.281827562$ $[0, 0, 0, 33, 1026]$ \(y^2=x^3+33x+1026\)
8280.o1 8280.o \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\mathsf{trivial}$ $0.875936345$ $[0, 0, 0, 33, -101]$ \(y^2=x^3+33x-101\)
8280.p1 8280.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -9507, -351106]$ \(y^2=x^3-9507x-351106\)
8280.p2 8280.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1227, 8246]$ \(y^2=x^3-1227x+8246\)
8280.p3 8280.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1047, 13034]$ \(y^2=x^3-1047x+13034\)
8280.p4 8280.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 4173, 61166]$ \(y^2=x^3+4173x+61166\)
8280.q1 8280.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $2.729848557$ $[0, 0, 0, -2187, 17766]$ \(y^2=x^3-2187x+17766\)
8280.q2 8280.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $1$ $\Z/2\Z$ $5.459697115$ $[0, 0, 0, -1107, -13986]$ \(y^2=x^3-1107x-13986\)
8280.r1 8280.r \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -19441587, 32994813166]$ \(y^2=x^3-19441587x+32994813166\)
8280.r2 8280.r \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1887267, -115818626]$ \(y^2=x^3-1887267x-115818626\)
8280.r3 8280.r \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1216587, 514218166]$ \(y^2=x^3-1216587x+514218166\)
8280.r4 8280.r \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -35607, 16553194]$ \(y^2=x^3-35607x+16553194\)
8280.s1 8280.s \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -162, -459]$ \(y^2=x^3-162x-459\)
8280.s2 8280.s \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 513, -3294]$ \(y^2=x^3+513x-3294\)
8280.t1 8280.t \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2532, 1463204]$ \(y^2=x^3-2532x+1463204\)
8280.u1 8280.u \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1812, -29756]$ \(y^2=x^3-1812x-29756\)
8280.v1 8280.v \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -22107, -1265146]$ \(y^2=x^3-22107x-1265146\)
8280.v2 8280.v \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1407, -19006]$ \(y^2=x^3-1407x-19006\)
8280.v3 8280.v \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -282, 1469]$ \(y^2=x^3-282x+1469\)
8280.v4 8280.v \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1293, -83266]$ \(y^2=x^3+1293x-83266\)
8280.w1 8280.w \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7707, -237994]$ \(y^2=x^3-7707x-237994\)
8280.w2 8280.w \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 573, -17746]$ \(y^2=x^3+573x-17746\)
  Download to