Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3+x^2+3167x+11119\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+x^2z+3167xz^2+11119z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+4104000x+469530000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(\frac{181}{4}, \frac{3989}{8}\right)\)
|
$\hat{h}(P)$ | ≈ | $2.2524072734962648026370090497$ |
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 825 \) | = | $3 \cdot 5^{2} \cdot 11$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-2076048046875 $ | = | $-1 \cdot 3 \cdot 5^{8} \cdot 11^{6} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{8990228480}{5314683} \) | = | $2^{18} \cdot 3^{-1} \cdot 5 \cdot 11^{-6} \cdot 19^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.0528142912586010139522802288\dots$ | ||
Stable Faltings height: | $-0.020144317030799235781559326684\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $2.2524072734962648026370090497\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.50308198258933344563298817670\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 2 $ = $ 1\cdot1\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 2.2662910334982718119316468866 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 1080 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $1$ | $IV^{*}$ | Additive | -1 | 2 | 8 | 0 |
$11$ | $2$ | $I_{6}$ | Non-split multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 3.8.0.2 |
The image of the adelic Galois representation has level $6$, index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 2 & 3 \\ 1 & 4 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 3 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 2 & 5 \end{array}\right)$
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | split | add | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 1,2 | 2 | - | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0,0 | 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 825.c
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.300.1 | \(\Z/2\Z\) | Not in database |
$3$ | 3.1.6075.1 | \(\Z/3\Z\) | Not in database |
$6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$6$ | 6.0.110716875.1 | \(\Z/3\Z \oplus \Z/3\Z\) | Not in database |
$9$ | 9.1.43046721000000.3 | \(\Z/6\Z\) | Not in database |
$12$ | deg 12 | \(\Z/4\Z\) | Not in database |
$18$ | 18.0.473272391221478207226757272216796875.2 | \(\Z/9\Z\) | Not in database |
$18$ | 18.0.5559060566555523000000000000.3 | \(\Z/6\Z \oplus \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.