Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+352354920x-2007529902000\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+352354920xz^2-2007529902000z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+456651976293x-93664685063640906\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(7350, 985950\right)\) |
$\hat{h}(P)$ | ≈ | $8.1394609687263747860865505011$ |
Torsion generators
\( \left(26160, 4998180\right) \)
Integral points
\( \left(7350, 985950\right) \), \( \left(7350, -993300\right) \), \( \left(26160, 4998180\right) \), \( \left(26160, -5024340\right) \)
Invariants
Conductor: | \( 82110 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-4540848316592979232425603600 $ | = | $-1 \cdot 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17^{16} \cdot 23^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{4837987390362436347081585367679}{4540848316592979232425603600} \) | = | $2^{-4} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 17^{-16} \cdot 23^{-2} \cdot 71039^{3} \cdot 238081^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $3.9941002091891954044324058131\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $3.9941002091891954044324058131\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.0168811917145575\dots$ | |||
Szpiro ratio: | $6.243832285107038\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $8.1394609687263747860865505011\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.023806154905303724018461847073\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 1024 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot2^{4}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 12.401233194699109664652645957 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 12.401233195 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.023806 \cdot 8.139461 \cdot 1024}{4^2} \approx 12.401233195$
Modular invariants
Modular form 82110.2.a.bs
For more coefficients, see the Downloads section to the right.
Modular degree: | 58720256 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$17$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$23$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.96.0.25 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1313760 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 25 & 16 \\ 1312024 & 1312649 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1199549 & 24 \\ 631806 & 2885 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 563069 & 8 \\ 374334 & 1313477 \end{array}\right),\left(\begin{array}{rr} 437945 & 32 \\ 441302 & 4329 \end{array}\right),\left(\begin{array}{rr} 1236481 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 32 \\ 266134 & 4329 \end{array}\right),\left(\begin{array}{rr} 25 & 16 \\ 1312374 & 1148653 \end{array}\right),\left(\begin{array}{rr} 1313729 & 32 \\ 1313728 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 4 & 129 \end{array}\right),\left(\begin{array}{rr} 25 & 16 \\ 942879 & 81223 \end{array}\right)$.
The torsion field $K:=\Q(E[1313760])$ is a degree-$497724242914852208640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1313760\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 27370 = 2 \cdot 5 \cdot 7 \cdot 17 \cdot 23 \) |
$5$ | split multiplicative | $6$ | \( 16422 = 2 \cdot 3 \cdot 7 \cdot 17 \cdot 23 \) |
$7$ | nonsplit multiplicative | $8$ | \( 11730 = 2 \cdot 3 \cdot 5 \cdot 17 \cdot 23 \) |
$17$ | split multiplicative | $18$ | \( 4830 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 23 \) |
$23$ | nonsplit multiplicative | $24$ | \( 3570 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 82110.bs
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{15}) \) | \(\Z/8\Z\) | not in database |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{4830})\) | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{322})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | 4.2.28566000.1 | \(\Z/16\Z\) | not in database |
$4$ | 4.0.10584000.3 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.816016356000000.57 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.1792336896000000.154 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | split | nonsplit | ord | ord | split | ord | nonsplit | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 10 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.