Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 816.h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
816.h1 | 816j1 | \([0, 1, 0, -40, -76]\) | \(1771561/612\) | \(2506752\) | \([2]\) | \(192\) | \(-0.070381\) | \(\Gamma_0(N)\)-optimal |
816.h2 | 816j2 | \([0, 1, 0, 120, -396]\) | \(46268279/46818\) | \(-191766528\) | \([2]\) | \(384\) | \(0.27619\) |
Rank
sage: E.rank()
The elliptic curves in class 816.h have rank \(1\).
Complex multiplication
The elliptic curves in class 816.h do not have complex multiplication.Modular form 816.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.