Properties

Label 8112.n
Number of curves $1$
Conductor $8112$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Elliptic curves in class 8112.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8112.n1 8112c1 \([0, -1, 0, 8056, -284064]\) \(69212/81\) \(-67659968922624\) \([]\) \(19968\) \(1.3401\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 8112.n1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8112.n do not have complex multiplication.

Modular form 8112.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + q^{9} - 3 q^{15} - q^{17} + O(q^{20})\) Copy content Toggle raw display