Properties

Label 8050.p
Number of curves $1$
Conductor $8050$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 8050.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8050.p1 8050s1 \([1, -1, 1, 920, 2347]\) \(137927116575/84410368\) \(-52756480000\) \([]\) \(7296\) \(0.74659\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8050.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 8050.p do not have complex multiplication.

Modular form 8050.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} - 3q^{9} - 4q^{11} + q^{13} - q^{14} + q^{16} + 3q^{17} - 3q^{18} + 8q^{19} + O(q^{20})\)  Toggle raw display