Properties

Label 8036.e
Number of curves $1$
Conductor $8036$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 8036.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8036.e1 8036e1 \([0, 1, 0, -24810, -1506583]\) \(373698304/1681\) \(7597454297104\) \([]\) \(17136\) \(1.3232\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 8036.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 8036.e do not have complex multiplication.

Modular form 8036.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2q^{9} - 5q^{11} + 2q^{13} + q^{15} + 3q^{17} + 3q^{19} + O(q^{20})\)  Toggle raw display