Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 799.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
799.b1 | 799a2 | \([1, 1, 1, -251, 1426]\) | \(1749254553649/13583\) | \(13583\) | \([2]\) | \(176\) | \(-0.033311\) | |
799.b2 | 799a1 | \([1, 1, 1, -16, 16]\) | \(454756609/37553\) | \(37553\) | \([2]\) | \(88\) | \(-0.37988\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 799.b have rank \(0\).
Complex multiplication
The elliptic curves in class 799.b do not have complex multiplication.Modular form 799.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.