Properties

Label 79560bm4
Conductor $79560$
Discriminant $1.523\times 10^{19}$
j-invariant \( \frac{79364416584061444}{20404090514925} \)
CM no
Rank $0$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -812163, 210014638])
 
gp: E = ellinit([0, 0, 0, -812163, 210014638])
 
magma: E := EllipticCurve([0, 0, 0, -812163, 210014638]);
 

\(y^2=x^3-812163x+210014638\)  Toggle raw display

Mordell-Weil group structure

$\Z/{2}\Z$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(722, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(722, 0\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 79560 \)  =  $2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $15231571953029452800 $  =  $2^{10} \cdot 3^{8} \cdot 5^{2} \cdot 13 \cdot 17^{8} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{79364416584061444}{20404090514925} \)  =  $2^{2} \cdot 3^{-2} \cdot 5^{-2} \cdot 11^{3} \cdot 13^{-1} \cdot 17^{-8} \cdot 24611^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.3901633179190939314521185302\dots$
Stable Faltings height: $1.2632345231184179945734691439\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $0$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.20717169681373578450723919663\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot2^{2}\cdot2\cdot1\cdot2 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L(E,1) $ ≈ $ 1.6573735745098862760579135730199128090 $

Modular invariants

Modular form 79560.2.a.b

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{5} - 4q^{7} + q^{13} - q^{17} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1572864
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive -1 3 10 0
$3$ $4$ $I_2^{*}$ Additive -1 2 8 2
$5$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$13$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$17$ $2$ $I_{8}$ Non-split multiplicative 1 1 8 8

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.12.0.10

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

All $p$-adic regulators are identically $1$ since the rank is $0$.

Iwasawa invariants

$p$ 2 3 5 13 17
Reduction type add add nonsplit split nonsplit
$\lambda$-invariant(s) - - 0 1 0
$\mu$-invariant(s) - - 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 79560bm consists of 3 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{13}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{39}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{3}) \) \(\Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{3}, \sqrt{13})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.1000887114240000.204 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.8.16014193827840000.14 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.0.56070144.5 \(\Z/8\Z\) Not in database
$8$ Deg 8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ 16.0.89791815397090000896.5 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.