Show commands for:
SageMath
sage: E = EllipticCurve("7935.d1")
sage: E.isogeny_class()
Elliptic curves in class 7935b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
7935.d7 | 7935b1 | [1, 1, 1, -11, -2272] | [2] | 3168 | \(\Gamma_0(N)\)-optimal |
7935.d6 | 7935b2 | [1, 1, 1, -2656, -53056] | [2, 2] | 6336 | |
7935.d4 | 7935b3 | [1, 1, 1, -42331, -3369886] | [2] | 12672 | |
7935.d5 | 7935b4 | [1, 1, 1, -5301, 66498] | [2, 2] | 12672 | |
7935.d2 | 7935b5 | [1, 1, 1, -71426, 7313798] | [2, 2] | 25344 | |
7935.d8 | 7935b6 | [1, 1, 1, 18504, 523554] | [2] | 25344 | |
7935.d1 | 7935b7 | [1, 1, 1, -1142651, 469654508] | [2] | 50688 | |
7935.d3 | 7935b8 | [1, 1, 1, -58201, 10122788] | [2] | 50688 |
Rank
sage: E.rank()
The elliptic curves in class 7935b have rank \(0\).
Modular form 7935.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.