Properties

Label 7935.c
Number of curves $1$
Conductor $7935$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 7935.c1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T + 2 T^{2}\) 1.2.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7935.c do not have complex multiplication.

Modular form 7935.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{2} + q^{3} + 2 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} + q^{9} - 2 q^{10} + 5 q^{11} + 2 q^{12} - 4 q^{14} + q^{15} - 4 q^{16} - 4 q^{17} - 2 q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 7935.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7935.c1 7935m1 \([0, 1, 1, -93280, -3547244]\) \(2166784/1125\) \(46604825115355125\) \([]\) \(105984\) \(1.8903\) \(\Gamma_0(N)\)-optimal