Learn more

Refine search


Results (26 matches)

  Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
7935.a1 7935.a \( 3 \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.225148680$ $[0, 1, 1, -176, 230]$ \(y^2+y=x^3+x^2-176x+230\)
7935.b1 7935.b \( 3 \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $1.143215683$ $[0, 1, 1, -53076, -5367004]$ \(y^2+y=x^3+x^2-53076x-5367004\)
7935.c1 7935.c \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -93280, -3547244]$ \(y^2+y=x^3+x^2-93280x-3547244\)
7935.d1 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1142651, 469654508]$ \(y^2+xy+y=x^3+x^2-1142651x+469654508\)
7935.d2 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -71426, 7313798]$ \(y^2+xy+y=x^3+x^2-71426x+7313798\)
7935.d3 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -58201, 10122788]$ \(y^2+xy+y=x^3+x^2-58201x+10122788\)
7935.d4 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -42331, -3369886]$ \(y^2+xy+y=x^3+x^2-42331x-3369886\)
7935.d5 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -5301, 66498]$ \(y^2+xy+y=x^3+x^2-5301x+66498\)
7935.d6 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2656, -53056]$ \(y^2+xy+y=x^3+x^2-2656x-53056\)
7935.d7 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -11, -2272]$ \(y^2+xy+y=x^3+x^2-11x-2272\)
7935.d8 7935.d \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 18504, 523554]$ \(y^2+xy+y=x^3+x^2+18504x+523554\)
7935.e1 7935.e \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -217430, 38913225]$ \(y^2+xy=x^3-217430x+38913225\)
7935.e2 7935.e \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -201560, -34714053]$ \(y^2+xy=x^3-201560x-34714053\)
7935.e3 7935.e \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -19055, 71400]$ \(y^2+xy=x^3-19055x+71400\)
7935.e4 7935.e \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, 4750, 9507]$ \(y^2+xy=x^3+4750x+9507\)
7935.f1 7935.f \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -8111, -72439]$ \(y^2+y=x^3-x^2-8111x-72439\)
7935.g1 7935.g \( 3 \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.121354457$ $[0, -1, 1, -386875, 92750133]$ \(y^2+y=x^3-x^2-386875x+92750133\)
7935.h1 7935.h \( 3 \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.624781484$ $[0, -1, 1, -15, 11]$ \(y^2+y=x^3-x^2-15x+11\)
7935.i1 7935.i \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -705, -20401]$ \(y^2+y=x^3+x^2-705x-20401\)
7935.j1 7935.j \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15940633, -24488418157]$ \(y^2+xy+y=x^3-15940633x-24488418157\)
7935.j2 7935.j \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -8762103, 9808700131]$ \(y^2+xy+y=x^3-8762103x+9808700131\)
7935.j3 7935.j \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1157728, -250367119]$ \(y^2+xy+y=x^3-1157728x-250367119\)
7935.j4 7935.j \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 241477, -28733047]$ \(y^2+xy+y=x^3+241477x-28733047\)
7935.k1 7935.k \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 15694, 1051157]$ \(y^2+y=x^3-x^2+15694x+1051157\)
7935.l1 7935.l \( 3 \cdot 5 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.920465647$ $[0, 1, 1, -68946, -6990505]$ \(y^2+y=x^3+x^2-68946x-6990505\)
7935.m1 7935.m \( 3 \cdot 5 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -130, 529]$ \(y^2+y=x^3+x^2-130x+529\)
  Download to