Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
7935.a1 |
7935g1 |
7935.a |
7935g |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 23^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.225148680$ |
$1$ |
|
$6$ |
$4608$ |
$0.322572$ |
$2166784/1125$ |
$[0, 1, 1, -176, 230]$ |
\(y^2+y=x^3+x^2-176x+230\) |
7935.b1 |
7935h1 |
7935.b |
7935h |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{8} \cdot 5^{3} \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.143215683$ |
$1$ |
|
$4$ |
$101376$ |
$1.690533$ |
$-111701610496/18862875$ |
$[0, 1, 1, -53076, -5367004]$ |
\(y^2+y=x^3+x^2-53076x-5367004\) |
7935.c1 |
7935m1 |
7935.c |
7935m |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 23^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$105984$ |
$1.890318$ |
$2166784/1125$ |
$[0, 1, 1, -93280, -3547244]$ |
\(y^2+y=x^3+x^2-93280x-3547244\) |
7935.d1 |
7935b7 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{4} \cdot 5 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.121 |
2B |
$1$ |
$1$ |
|
$0$ |
$50688$ |
$1.858616$ |
$1114544804970241/405$ |
$[1, 1, 1, -1142651, 469654508]$ |
\(y^2+xy+y=x^3+x^2-1142651x+469654508\) |
7935.d2 |
7935b5 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{8} \cdot 5^{2} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.123 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$25344$ |
$1.512043$ |
$272223782641/164025$ |
$[1, 1, 1, -71426, 7313798]$ |
\(y^2+xy+y=x^3+x^2-71426x+7313798\) |
7935.d3 |
7935b8 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{16} \cdot 5 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.134 |
2B |
$1$ |
$1$ |
|
$0$ |
$50688$ |
$1.858616$ |
$-147281603041/215233605$ |
$[1, 1, 1, -58201, 10122788]$ |
\(y^2+xy+y=x^3+x^2-58201x+10122788\) |
7935.d4 |
7935b3 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3 \cdot 5 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$12672$ |
$1.165470$ |
$56667352321/15$ |
$[1, 1, 1, -42331, -3369886]$ |
\(y^2+xy+y=x^3+x^2-42331x-3369886\) |
7935.d5 |
7935b4 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{4} \cdot 5^{4} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.44 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$12672$ |
$1.165470$ |
$111284641/50625$ |
$[1, 1, 1, -5301, 66498]$ |
\(y^2+xy+y=x^3+x^2-5301x+66498\) |
7935.d6 |
7935b2 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.3 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$6336$ |
$0.818896$ |
$13997521/225$ |
$[1, 1, 1, -2656, -53056]$ |
\(y^2+xy+y=x^3+x^2-2656x-53056\) |
7935.d7 |
7935b1 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3 \cdot 5 \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$3168$ |
$0.472322$ |
$-1/15$ |
$[1, 1, 1, -11, -2272]$ |
\(y^2+xy+y=x^3+x^2-11x-2272\) |
7935.d8 |
7935b6 |
7935.d |
7935b |
$8$ |
$16$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{2} \cdot 5^{8} \cdot 23^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.197 |
2B |
$1$ |
$1$ |
|
$0$ |
$25344$ |
$1.512043$ |
$4733169839/3515625$ |
$[1, 1, 1, 18504, 523554]$ |
\(y^2+xy+y=x^3+x^2+18504x+523554\) |
7935.e1 |
7935k4 |
7935.e |
7935k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3 \cdot 5^{2} \cdot 23^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$0$ |
$84480$ |
$1.846069$ |
$7679186557489/20988075$ |
$[1, 0, 0, -217430, 38913225]$ |
\(y^2+xy=x^3-217430x+38913225\) |
7935.e2 |
7935k3 |
7935.e |
7935k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3 \cdot 5^{8} \cdot 23^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$0$ |
$84480$ |
$1.846069$ |
$6117442271569/26953125$ |
$[1, 0, 0, -201560, -34714053]$ |
\(y^2+xy=x^3-201560x-34714053\) |
7935.e3 |
7935k2 |
7935.e |
7935k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5^{4} \cdot 23^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$42240$ |
$1.499496$ |
$5168743489/2975625$ |
$[1, 0, 0, -19055, 71400]$ |
\(y^2+xy=x^3-19055x+71400\) |
7935.e4 |
7935k1 |
7935.e |
7935k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{4} \cdot 5^{2} \cdot 23^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$21120$ |
$1.152922$ |
$80062991/46575$ |
$[1, 0, 0, 4750, 9507]$ |
\(y^2+xy=x^3+4750x+9507\) |
7935.f1 |
7935a1 |
7935.f |
7935a |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{4} \cdot 5 \cdot 23^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$17664$ |
$1.281807$ |
$753664/405$ |
$[0, -1, 1, -8111, -72439]$ |
\(y^2+y=x^3-x^2-8111x-72439\) |
7935.g1 |
7935d1 |
7935.g |
7935d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{2} \cdot 5^{5} \cdot 23^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.121354457$ |
$1$ |
|
$6$ |
$42240$ |
$1.819633$ |
$-43258336804864/646875$ |
$[0, -1, 1, -386875, 92750133]$ |
\(y^2+y=x^3-x^2-386875x+92750133\) |
7935.h1 |
7935e1 |
7935.h |
7935e |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{4} \cdot 5 \cdot 23^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.624781484$ |
$1$ |
|
$4$ |
$768$ |
$-0.285940$ |
$753664/405$ |
$[0, -1, 1, -15, 11]$ |
\(y^2+y=x^3-x^2-15x+11\) |
7935.i1 |
7935i1 |
7935.i |
7935i |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{2} \cdot 5 \cdot 23^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$8448$ |
$0.831668$ |
$-262144/1035$ |
$[0, 1, 1, -705, -20401]$ |
\(y^2+y=x^3+x^2-705x-20401\) |
7935.j1 |
7935j3 |
7935.j |
7935j |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{5} \cdot 5^{12} \cdot 23^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$0$ |
$633600$ |
$2.854019$ |
$3026030815665395929/1364501953125$ |
$[1, 0, 1, -15940633, -24488418157]$ |
\(y^2+xy+y=x^3-15940633x-24488418157\) |
7935.j2 |
7935j4 |
7935.j |
7935j |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{20} \cdot 5^{3} \cdot 23^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$2$ |
$633600$ |
$2.854019$ |
$502552788401502649/10024505152875$ |
$[1, 0, 1, -8762103, 9808700131]$ |
\(y^2+xy+y=x^3-8762103x+9808700131\) |
7935.j3 |
7935j2 |
7935.j |
7935j |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{10} \cdot 5^{6} \cdot 23^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$316800$ |
$2.507446$ |
$1159246431432649/488076890625$ |
$[1, 0, 1, -1157728, -250367119]$ |
\(y^2+xy+y=x^3-1157728x-250367119\) |
7935.j4 |
7935j1 |
7935.j |
7935j |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{5} \cdot 5^{3} \cdot 23^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$158400$ |
$2.160873$ |
$10519294081031/8500170375$ |
$[1, 0, 1, 241477, -28733047]$ |
\(y^2+xy+y=x^3+241477x-28733047\) |
7935.k1 |
7935c1 |
7935.k |
7935c |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( - 3^{4} \cdot 5 \cdot 23^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$50688$ |
$1.536905$ |
$2887553024/4927635$ |
$[0, -1, 1, 15694, 1051157]$ |
\(y^2+y=x^3-x^2+15694x+1051157\) |
7935.l1 |
7935f1 |
7935.l |
7935f |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5 \cdot 23^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.920465647$ |
$1$ |
|
$0$ |
$35328$ |
$1.443285$ |
$462843904/45$ |
$[0, 1, 1, -68946, -6990505]$ |
\(y^2+y=x^3+x^2-68946x-6990505\) |
7935.m1 |
7935l1 |
7935.m |
7935l |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 23^{2} \) |
\( 3^{2} \cdot 5 \cdot 23^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1536$ |
$-0.124462$ |
$462843904/45$ |
$[0, 1, 1, -130, 529]$ |
\(y^2+y=x^3+x^2-130x+529\) |