Properties

Label 792e
Number of curves 4
Conductor 792
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("792.f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 792e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
792.f4 792e1 [0, 0, 0, 6, -155] [2] 192 \(\Gamma_0(N)\)-optimal
792.f3 792e2 [0, 0, 0, -399, -2990] [2, 2] 384  
792.f1 792e3 [0, 0, 0, -6339, -194258] [2] 768  
792.f2 792e4 [0, 0, 0, -939, 6838] [4] 768  

Rank

sage: E.rank()
 

The elliptic curves in class 792e have rank \(0\).

Modular form 792.2.a.f

sage: E.q_eigenform(10)
 
\( q + 2q^{5} + 4q^{7} + q^{11} + 6q^{13} - 6q^{17} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.