Properties

Label 786f2
Conductor 786
Discriminant 53954184
j-invariant \( \frac{333822098953}{53954184} \)
CM no
Rank 0
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -145, -580]); // or
 
magma: E := EllipticCurve("786f2");
 
sage: E = EllipticCurve([1, 0, 1, -145, -580]) # or
 
sage: E = EllipticCurve("786f2")
 
gp: E = ellinit([1, 0, 1, -145, -580]) \\ or
 
gp: E = ellinit("786f2")
 

\( y^2 + x y + y = x^{3} - 145 x - 580 \)

Mordell-Weil group structure

Trivial

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 
None

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 786 \)  =  \(2 \cdot 3 \cdot 131\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(53954184 \)  =  \(2^{3} \cdot 3 \cdot 131^{3} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{333822098953}{53954184} \)  =  \(2^{-3} \cdot 3^{-1} \cdot 7^{3} \cdot 131^{-3} \cdot 991^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(1.39200518748\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 1 \)  = \( 1\cdot1\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(1\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 786.2.a.f

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q - q^{2} + q^{3} + q^{4} - 3q^{5} - q^{6} + 5q^{7} - q^{8} + q^{9} + 3q^{10} + 3q^{11} + q^{12} + 2q^{13} - 5q^{14} - 3q^{15} + q^{16} - 3q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 456
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 1.39200518748 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(1\) \( I_{3} \) Non-split multiplicative 1 1 3 3
\(3\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1
\(131\) \(1\) \( I_{3} \) Non-split multiplicative 1 1 3 3

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(3\) B.1.2

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 131
Reduction type nonsplit split nonsplit
$\lambda$-invariant(s) 2 5 0
$\mu$-invariant(s) 0 1 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 786f consists of 2 curves linked by isogenies of degree 3.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-3}) \) \(\Z/3\Z\) Not in database
3 3.3.3144.1 \(\Z/2\Z\) Not in database
3.1.243.1 \(\Z/3\Z\) Not in database
6 6.0.29654208.1 \(\Z/6\Z\) Not in database
6.0.177147.2 \(\Z/3\Z \times \Z/3\Z\) Not in database
6.6.31077609984.1 \(\Z/2\Z \times \Z/2\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.