Show commands for:
SageMath
sage: E = EllipticCurve("786.f1")
sage: E.isogeny_class()
Elliptic curves in class 786.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
786.f1 | 786f2 | [1, 0, 1, -145, -580] | [] | 456 | |
786.f2 | 786f1 | [1, 0, 1, -40, 92] | [3] | 152 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 786.f have rank \(0\).
Modular form 786.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.