# Properties

 Label 78400y Number of curves $4$ Conductor $78400$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("78400.fc1")

sage: E.isogeny_class()

## Elliptic curves in class 78400y

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
78400.fc4 78400y1 [0, 0, 0, 181300, 47334000]  884736 $$\Gamma_0(N)$$-optimal
78400.fc3 78400y2 [0, 0, 0, -1386700, 508326000] [2, 2] 1769472
78400.fc2 78400y3 [0, 0, 0, -6874700, -6483386000]  3538944
78400.fc1 78400y4 [0, 0, 0, -20986700, 37003526000]  3538944

## Rank

sage: E.rank()

The elliptic curves in class 78400y have rank $$0$$.

## Modular form 78400.2.a.fc

sage: E.q_eigenform(10)

$$q - 3q^{9} - 4q^{11} + 6q^{13} + 2q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 