Show commands for:
SageMath
sage: E = EllipticCurve("gz1")
sage: E.isogeny_class()
Elliptic curves in class 78400gz
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
78400.ey4 | 78400gz1 | [0, 0, 0, 4900, 686000] | [2] | 196608 | \(\Gamma_0(N)\)-optimal |
78400.ey3 | 78400gz2 | [0, 0, 0, -93100, 10290000] | [2, 2] | 393216 | |
78400.ey2 | 78400gz3 | [0, 0, 0, -289100, -47334000] | [2] | 786432 | |
78400.ey1 | 78400gz4 | [0, 0, 0, -1465100, 682570000] | [2] | 786432 |
Rank
sage: E.rank()
The elliptic curves in class 78400gz have rank \(1\).
Complex multiplication
The elliptic curves in class 78400gz do not have complex multiplication.Modular form 78400.2.a.gz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.