Show commands for:
SageMath
sage: E = EllipticCurve("e1")
sage: E.isogeny_class()
Elliptic curves in class 784.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
784.e1 | 784c4 | [0, 0, 0, -14651, 682570] | [4] | 768 | |
784.e2 | 784c3 | [0, 0, 0, -2891, -47334] | [2] | 768 | |
784.e3 | 784c2 | [0, 0, 0, -931, 10290] | [2, 2] | 384 | |
784.e4 | 784c1 | [0, 0, 0, 49, 686] | [2] | 192 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 784.e have rank \(0\).
Complex multiplication
The elliptic curves in class 784.e do not have complex multiplication.Modular form 784.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.