Minimal Weierstrass equation
\(y^2=x^3+x^2-8248x+285396\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(44, 98\right)\)
|
$\hat{h}(P)$ | ≈ | $0.77937937044769313002346382928$ |
Torsion generators
\( \left(51, 0\right) \)
Integral points
\((44,\pm 98)\), \( \left(51, 0\right) \), \((55,\pm 34)\), \((100,\pm 686)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 784 \) | = | $2^{4} \cdot 7^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $47225249792 $ | = | $2^{13} \cdot 7^{8} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{128787625}{98} \) | = | $2^{-1} \cdot 5^{3} \cdot 7^{-2} \cdot 101^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.98059094684257672815544561109\dots$ | ||
Stable Faltings height: | $-0.68551130824502523381446288209\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.77937937044769313002346382928\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $1.1233153024138364501605822856\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 8 $ = $ 2\cdot2^{2} $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 1.7509775464191117511001905895 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 768 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{5}^{*}$ | Additive | -1 | 4 | 13 | 1 |
$7$ | $4$ | $I_{2}^{*}$ | Additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.6 |
$3$ | 3B | 9.12.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ss | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 1,3 | - | 1,1 | 1 | 1 | 1 | 1,1 | 3 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0,0 | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 784.b
consists of 6 curves linked by isogenies of
degrees dividing 18.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/6\Z\) | 2.2.28.1-14.1-b5 |
$4$ | 4.0.392.1 | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{7})\) | \(\Z/2\Z \times \Z/6\Z\) | 4.4.12544.1-98.1-n10 |
$6$ | 6.0.116169984.1 | \(\Z/6\Z\) | Not in database |
$6$ | \(\Q(\zeta_{28})^+\) | \(\Z/18\Z\) | 6.6.1075648.1-56.1-a5 |
$8$ | 8.0.9834496.2 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.4.40282095616.3 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.9834496.1 | \(\Z/12\Z\) | Not in database |
$12$ | 12.0.13495465182560256.3 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$12$ | 12.0.275417656786944.2 | \(\Z/18\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$12$ | \(\Q(\zeta_{56})^+\) | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | 16.0.24759631762948096.2 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$16$ | 16.8.1622647227216566419456.1 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.