Properties

Label 7803.k
Number of curves $4$
Conductor $7803$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7803.k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 7803.k has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 7803.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{7} + 5 q^{13} + 4 q^{16} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 27 & 3 & 9 \\ 27 & 1 & 9 & 3 \\ 3 & 9 & 1 & 3 \\ 9 & 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 7803.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
7803.k1 7803a4 \([0, 0, 1, -78030, -8390176]\) \(-12288000\) \(-4275897935643\) \([]\) \(15552\) \(1.4688\)   \(-27\)
7803.k2 7803a3 \([0, 0, 1, -8670, 310747]\) \(-12288000\) \(-5865429267\) \([]\) \(5184\) \(0.91945\)   \(-27\)
7803.k3 7803a2 \([0, 0, 1, 0, -33163]\) \(0\) \(-475099770627\) \([]\) \(5184\) \(0.91945\)   \(-3\)
7803.k4 7803a1 \([0, 0, 1, 0, 1228]\) \(0\) \(-651714363\) \([]\) \(1728\) \(0.37014\) \(\Gamma_0(N)\)-optimal \(-3\)