Show commands: SageMath
Rank
The elliptic curves in class 7800.r have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 7800.r do not have complex multiplication.Modular form 7800.2.a.r
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 7800.r
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
7800.r1 | 7800e4 | \([0, 1, 0, -60840008, 182634907488]\) | \(1556580279686303289604/114075\) | \(1825200000000\) | \([2]\) | \(368640\) | \(2.7223\) | |
7800.r2 | 7800e5 | \([0, 1, 0, -13364008, -15704090512]\) | \(8248670337458940482/1446075439453125\) | \(46274414062500000000000\) | \([2]\) | \(737280\) | \(3.0689\) | |
7800.r3 | 7800e3 | \([0, 1, 0, -3887008, 2719197488]\) | \(405929061432816484/35083409765625\) | \(561334556250000000000\) | \([2, 2]\) | \(368640\) | \(2.7223\) | |
7800.r4 | 7800e2 | \([0, 1, 0, -3802508, 2852707488]\) | \(1520107298839022416/13013105625\) | \(52052422500000000\) | \([2, 2]\) | \(184320\) | \(2.3757\) | |
7800.r5 | 7800e1 | \([0, 1, 0, -232383, 46589238]\) | \(-5551350318708736/550618236675\) | \(-137654559168750000\) | \([2]\) | \(92160\) | \(2.0291\) | \(\Gamma_0(N)\)-optimal |
7800.r6 | 7800e6 | \([0, 1, 0, 4237992, 12599197488]\) | \(263059523447441758/2294739983908125\) | \(-73431679485060000000000\) | \([2]\) | \(737280\) | \(3.0689\) |