Learn more

Refine search


Results (1-50 of 59 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
7800.a1 7800.a \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -14040008, -20244113988]$ \(y^2=x^3-x^2-14040008x-20244113988\)
7800.a2 7800.a \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -877508, -316088988]$ \(y^2=x^3-x^2-877508x-316088988\)
7800.a3 7800.a \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -837008, -346625988]$ \(y^2=x^3-x^2-837008x-346625988\)
7800.a4 7800.a \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -57383, -4441488]$ \(y^2=x^3-x^2-57383x-4441488\)
7800.b1 7800.b \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -152833, 23106037]$ \(y^2=x^3-x^2-152833x+23106037\)
7800.c1 7800.c \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -208, 1612]$ \(y^2=x^3-x^2-208x+1612\)
7800.d1 7800.d \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.381901566$ $[0, -1, 0, -20808, -1148388]$ \(y^2=x^3-x^2-20808x-1148388\)
7800.d2 7800.d \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.190950783$ $[0, -1, 0, -1308, -17388]$ \(y^2=x^3-x^2-1308x-17388\)
7800.d3 7800.d \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.095475391$ $[0, -1, 0, -183, 612]$ \(y^2=x^3-x^2-183x+612\)
7800.d4 7800.d \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.381901566$ $[0, -1, 0, 192, -56388]$ \(y^2=x^3-x^2+192x-56388\)
7800.e1 7800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.001712665$ $[0, -1, 0, -247408, -22467188]$ \(y^2=x^3-x^2-247408x-22467188\)
7800.e2 7800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.003425330$ $[0, -1, 0, -122408, 16282812]$ \(y^2=x^3-x^2-122408x+16282812\)
7800.e3 7800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/4\Z$ $2.001712665$ $[0, -1, 0, -121908, 16423812]$ \(y^2=x^3-x^2-121908x+16423812\)
7800.e4 7800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $8.006850661$ $[0, -1, 0, -5408, 46000812]$ \(y^2=x^3-x^2-5408x+46000812\)
7800.f1 7800.f \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.299297103$ $[0, -1, 0, -1708, -26588]$ \(y^2=x^3-x^2-1708x-26588\)
7800.f2 7800.f \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.598594207$ $[0, -1, 0, -83, -588]$ \(y^2=x^3-x^2-83x-588\)
7800.g1 7800.g \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 242967, 30253437]$ \(y^2=x^3-x^2+242967x+30253437\)
7800.h1 7800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5008, 136012]$ \(y^2=x^3-x^2-5008x+136012\)
7800.h2 7800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -8, 6012]$ \(y^2=x^3-x^2-8x+6012\)
7800.i1 7800.i \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.622007720$ $[0, -1, 0, -2633, 80637]$ \(y^2=x^3-x^2-2633x+80637\)
7800.j1 7800.j \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1508, 21012]$ \(y^2=x^3-x^2-1508x+21012\)
7800.j2 7800.j \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 117, 1512]$ \(y^2=x^3-x^2+117x+1512\)
7800.k1 7800.k \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -41408, -3217188]$ \(y^2=x^3-x^2-41408x-3217188\)
7800.k2 7800.k \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -3908, 7812]$ \(y^2=x^3-x^2-3908x+7812\)
7800.k3 7800.k \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2783, 57312]$ \(y^2=x^3-x^2-2783x+57312\)
7800.k4 7800.k \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 15592, 46812]$ \(y^2=x^3-x^2+15592x+46812\)
7800.l1 7800.l \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1167, -261963]$ \(y^2=x^3-x^2+1167x-261963\)
7800.m1 7800.m \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.180950656$ $[0, 1, 0, 47, -2077]$ \(y^2=x^3+x^2+47x-2077\)
7800.n1 7800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.089429912$ $[0, 1, 0, -7608, -251712]$ \(y^2=x^3+x^2-7608x-251712\)
7800.n2 7800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.544714956$ $[0, 1, 0, -1108, 8288]$ \(y^2=x^3+x^2-1108x+8288\)
7800.n3 7800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.089429912$ $[0, 1, 0, -983, 11538]$ \(y^2=x^3+x^2-983x+11538\)
7800.n4 7800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.089429912$ $[0, 1, 0, 3392, 62288]$ \(y^2=x^3+x^2+3392x+62288\)
7800.o1 7800.o \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -208008, 36445488]$ \(y^2=x^3+x^2-208008x+36445488\)
7800.o2 7800.o \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -18008, 85488]$ \(y^2=x^3+x^2-18008x+85488\)
7800.o3 7800.o \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -13008, 565488]$ \(y^2=x^3+x^2-13008x+565488\)
7800.o4 7800.o \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -508, 15488]$ \(y^2=x^3+x^2-508x+15488\)
7800.p1 7800.p \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -107008, -9476512]$ \(y^2=x^3+x^2-107008x-9476512\)
7800.p2 7800.p \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 17992, -976512]$ \(y^2=x^3+x^2+17992x-976512\)
7800.q1 7800.q \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -5208, 191088]$ \(y^2=x^3+x^2-5208x+191088\)
7800.r1 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -60840008, 182634907488]$ \(y^2=x^3+x^2-60840008x+182634907488\)
7800.r2 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -13364008, -15704090512]$ \(y^2=x^3+x^2-13364008x-15704090512\)
7800.r3 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -3887008, 2719197488]$ \(y^2=x^3+x^2-3887008x+2719197488\)
7800.r4 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -3802508, 2852707488]$ \(y^2=x^3+x^2-3802508x+2852707488\)
7800.r5 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -232383, 46589238]$ \(y^2=x^3+x^2-232383x+46589238\)
7800.r6 7800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 4237992, 12599197488]$ \(y^2=x^3+x^2+4237992x+12599197488\)
7800.s1 7800.s \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.261734885$ $[0, 1, 0, -16283, 745938]$ \(y^2=x^3+x^2-16283x+745938\)
7800.s2 7800.s \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.523469770$ $[0, 1, 0, 14092, 3236688]$ \(y^2=x^3+x^2+14092x+3236688\)
7800.t1 7800.t \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -192408, 32342688]$ \(y^2=x^3+x^2-192408x+32342688\)
7800.t2 7800.t \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -179408, -29199312]$ \(y^2=x^3+x^2-179408x-29199312\)
7800.t3 7800.t \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -16908, 50688]$ \(y^2=x^3+x^2-16908x+50688\)
Next   Download to