## Results (1-50 of 59 matches)

Label Class Conductor Rank Torsion CM Weierstrass equation
7800.a1 7800.a $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-14040008x-20244113988$$
7800.a2 7800.a $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-x^2-877508x-316088988$$
7800.a3 7800.a $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-837008x-346625988$$
7800.a4 7800.a $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-57383x-4441488$$
7800.b1 7800.b $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-x^2-152833x+23106037$$
7800.c1 7800.c $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-x^2-208x+1612$$
7800.d1 7800.d $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-20808x-1148388$$
7800.d2 7800.d $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-x^2-1308x-17388$$
7800.d3 7800.d $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-183x+612$$
7800.d4 7800.d $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2+192x-56388$$
7800.e1 7800.e $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-247408x-22467188$$
7800.e2 7800.e $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-x^2-122408x+16282812$$
7800.e3 7800.e $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/4\Z$ $$y^2=x^3-x^2-121908x+16423812$$
7800.e4 7800.e $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-5408x+46000812$$
7800.f1 7800.f $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-1708x-26588$$
7800.f2 7800.f $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-x^2-83x-588$$
7800.g1 7800.g $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-x^2+242967x+30253437$$
7800.h1 7800.h $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-5008x+136012$$
7800.h2 7800.h $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-8x+6012$$
7800.i1 7800.i $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-x^2-2633x+80637$$
7800.j1 7800.j $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-1508x+21012$$
7800.j2 7800.j $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2+117x+1512$$
7800.k1 7800.k $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-41408x-3217188$$
7800.k2 7800.k $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-x^2-3908x+7812$$
7800.k3 7800.k $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2-2783x+57312$$
7800.k4 7800.k $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-x^2+15592x+46812$$
7800.l1 7800.l $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3-x^2+1167x-261963$$
7800.m1 7800.m $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+x^2+47x-2077$$
7800.n1 7800.n $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+x^2-7608x-251712$$
7800.n2 7800.n $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3+x^2-1108x+8288$$
7800.n3 7800.n $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+x^2-983x+11538$$
7800.n4 7800.n $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+x^2+3392x+62288$$
7800.o1 7800.o $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-208008x+36445488$$
7800.o2 7800.o $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-18008x+85488$$
7800.o3 7800.o $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3+x^2-13008x+565488$$
7800.o4 7800.o $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-508x+15488$$
7800.p1 7800.p $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-107008x-9476512$$
7800.p2 7800.p $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2+17992x-976512$$
7800.q1 7800.q $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\mathsf{trivial}$ $$y^2=x^3+x^2-5208x+191088$$
7800.r1 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-60840008x+182634907488$$
7800.r2 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-13364008x-15704090512$$
7800.r3 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3+x^2-3887008x+2719197488$$
7800.r4 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3+x^2-3802508x+2852707488$$
7800.r5 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-232383x+46589238$$
7800.r6 7800.r $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2+4237992x+12599197488$$
7800.s1 7800.s $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+x^2-16283x+745938$$
7800.s2 7800.s $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+x^2+14092x+3236688$$
7800.t1 7800.t $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-192408x+32342688$$
7800.t2 7800.t $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3+x^2-179408x-29199312$$
7800.t3 7800.t $$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3+x^2-16908x+50688$$