Properties

Label 7744y
Number of curves $3$
Conductor $7744$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 7744y have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 7744y do not have complex multiplication.

Modular form 7744.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{7} - 2 q^{9} + 4 q^{13} + q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 5 & 25 \\ 5 & 1 & 5 \\ 25 & 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 7744y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7744.k3 7744y1 \([0, -1, 0, -161, 1927]\) \(-4096/11\) \(-1247178944\) \([]\) \(1920\) \(0.43279\) \(\Gamma_0(N)\)-optimal
7744.k2 7744y2 \([0, -1, 0, -5001, -244913]\) \(-122023936/161051\) \(-18259946919104\) \([]\) \(9600\) \(1.2375\)  
7744.k1 7744y3 \([0, -1, 0, -3785041, -2833092073]\) \(-52893159101157376/11\) \(-1247178944\) \([]\) \(48000\) \(2.0422\)