Show commands for:
SageMath
sage: E = EllipticCurve("bf1")
sage: E.isogeny_class()
Elliptic curves in class 7744.bf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
7744.bf1 | 7744bb2 | [0, -1, 0, -232481, -43068991] | [] | 33792 | |
7744.bf2 | 7744bb1 | [0, -1, 0, -161, 3137] | [] | 3072 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 7744.bf have rank \(1\).
Complex multiplication
The elliptic curves in class 7744.bf do not have complex multiplication.Modular form 7744.2.a.bf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.