Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-93x+315\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-93xz^2+315z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-7560x+252288\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(6, 3\right)\)
|
$\hat{h}(P)$ | ≈ | $0.77194505839323048975230144353$ |
Torsion generators
\( \left(5, 0\right) \)
Integral points
\((-3,\pm 24)\), \( \left(5, 0\right) \), \((6,\pm 3)\)
Invariants
Conductor: | \( 768 \) | = | $2^{8} \cdot 3$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $294912 $ | = | $2^{15} \cdot 3^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{2744000}{9} \) | = | $2^{6} \cdot 3^{-2} \cdot 5^{3} \cdot 7^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $-0.085140834103132377911299535516\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-0.95157480980306401468283968734\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.77194505839323048975230144353\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $3.0869981951283722670736651291\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 4 $ = $ 2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 2.3829930019981684592865723611 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.382993002 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.086998 \cdot 0.771945 \cdot 4}{2^2} \approx 2.382993002$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 128 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | Additive | -1 | 8 | 15 | 0 |
$3$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.244 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 48.96.1-24.dl.1.2, level \( 48 = 2^{4} \cdot 3 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 14 & 35 \\ 21 & 38 \end{array}\right),\left(\begin{array}{rr} 41 & 38 \\ 10 & 3 \end{array}\right),\left(\begin{array}{rr} 11 & 8 \\ 16 & 3 \end{array}\right),\left(\begin{array}{rr} 33 & 16 \\ 32 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 8 & 5 \end{array}\right),\left(\begin{array}{rr} 17 & 10 \\ 46 & 45 \end{array}\right),\left(\begin{array}{rr} 11 & 12 \\ 44 & 35 \end{array}\right)$.
The torsion field $K:=\Q(E[48])$ is a degree-$12288$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/48\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 768g
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 768a1, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$4$ | 4.0.2048.1 | \(\Z/4\Z\) | Not in database |
$8$ | 8.4.1358954496.2 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.16777216.2 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.603979776.1 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.603979776.4 | \(\Z/8\Z\) | Not in database |
$8$ | 8.2.2972033482752.20 | \(\Z/6\Z\) | Not in database |
$16$ | 16.0.1846757322198614016.5 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | 16.0.1459166279268040704.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | 16.0.3361919107433565782016.2 | \(\Z/16\Z\) | Not in database |
$16$ | 16.0.272315447702118828343296.207 | \(\Z/16\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ss | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 2 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.