Properties

Label 768a
Number of curves $2$
Conductor $768$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 768a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
768.b1 768a1 \([0, -1, 0, -23, 51]\) \(2744000/9\) \(4608\) \([2]\) \(64\) \(-0.43171\) \(\Gamma_0(N)\)-optimal
768.b2 768a2 \([0, -1, 0, -13, 85]\) \(-8000/81\) \(-2654208\) \([2]\) \(128\) \(-0.085141\)  

Rank

sage: E.rank()
 

The elliptic curves in class 768a have rank \(1\).

Complex multiplication

The elliptic curves in class 768a do not have complex multiplication.

Modular form 768.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} + 4 q^{11} + 4 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.