Show commands for:
SageMath
sage: E = EllipticCurve("b1")
sage: E.isogeny_class()
Elliptic curves in class 76664b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
76664.b4 | 76664b1 | [0, 0, 0, 1369, 101306] | [2] | 103680 | \(\Gamma_0(N)\)-optimal |
76664.b3 | 76664b2 | [0, 0, 0, -26011, 1519590] | [2, 2] | 207360 | |
76664.b2 | 76664b3 | [0, 0, 0, -80771, -6990114] | [2] | 414720 | |
76664.b1 | 76664b4 | [0, 0, 0, -409331, 100799470] | [2] | 414720 |
Rank
sage: E.rank()
The elliptic curves in class 76664b have rank \(1\).
Complex multiplication
The elliptic curves in class 76664b do not have complex multiplication.Modular form 76664.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.