Properties

Label 7650.bw
Number of curves $4$
Conductor $7650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bw1")
 
E.isogeny_class()
 

Elliptic curves in class 7650.bw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7650.bw1 7650cb4 \([1, -1, 1, -41855, 3299397]\) \(711882749089/1721250\) \(19606113281250\) \([2]\) \(24576\) \(1.4294\)  
7650.bw2 7650cb3 \([1, -1, 1, -37355, -2757603]\) \(506071034209/2505630\) \(28540691718750\) \([2]\) \(24576\) \(1.4294\)  
7650.bw3 7650cb2 \([1, -1, 1, -3605, 9897]\) \(454756609/260100\) \(2962701562500\) \([2, 2]\) \(12288\) \(1.0828\)  
7650.bw4 7650cb1 \([1, -1, 1, 895, 897]\) \(6967871/4080\) \(-46473750000\) \([4]\) \(6144\) \(0.73625\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 7650.bw have rank \(0\).

Complex multiplication

The elliptic curves in class 7650.bw do not have complex multiplication.

Modular form 7650.2.a.bw

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} - 4 q^{11} - 2 q^{13} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.