Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-101946x+12401892\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-101946xz^2+12401892z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-132122043x+579019039254\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{7}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(204, 222)$ | $0$ | $7$ |
Integral points
\( \left(204, 222\right) \), \( \left(204, -426\right) \), \( \left(276, 2166\right) \), \( \left(276, -2442\right) \), \( \left(852, 22902\right) \), \( \left(852, -23754\right) \)
Invariants
Conductor: | $N$ | = | \( 762 \) | = | $2 \cdot 3 \cdot 127$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $1273887851544576$ | = | $2^{21} \cdot 3^{14} \cdot 127 $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{117174888570509216929}{1273887851544576} \) | = | $2^{-21} \cdot 3^{-14} \cdot 73^{3} \cdot 127^{-1} \cdot 67033^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7135187442137199781604568426$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.7135187442137199781604568426$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $1.0238226803035642$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.963618359333392$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 0$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.48598657828407722412839250339$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 294 $ = $ ( 3 \cdot 7 )\cdot( 2 \cdot 7 )\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $7$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L(E,1)$ | ≈ | $2.9159194697044633447703550203 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 2.915919470 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.485987 \cdot 1.000000 \cdot 294}{7^2} \approx 2.915919470$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 3696 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $21$ | $I_{21}$ | split multiplicative | -1 | 1 | 21 | 21 |
$3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$127$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.1.1 | 7.48.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 7112 = 2^{3} \cdot 7 \cdot 127 \), index $96$, genus $2$, and generators
$\left(\begin{array}{rr} 1779 & 3570 \\ 0 & 3811 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3305 & 14 \\ 1799 & 99 \end{array}\right),\left(\begin{array}{rr} 5335 & 14 \\ 1785 & 99 \end{array}\right),\left(\begin{array}{rr} 3557 & 14 \\ 3563 & 99 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 7099 & 14 \\ 7098 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right)$.
The torsion field $K:=\Q(E[7112])$ is a degree-$8324636737536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/7112\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 127 \) |
$3$ | split multiplicative | $4$ | \( 127 \) |
$7$ | good | $2$ | \( 127 \) |
$127$ | split multiplicative | $128$ | \( 6 = 2 \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 762g
consists of 2 curves linked by isogenies of
degree 7.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{7}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.3.1016.1 | \(\Z/14\Z\) | not in database |
$6$ | 6.6.1048772096.1 | \(\Z/2\Z \oplus \Z/14\Z\) | not in database |
$8$ | 8.2.46083842719227.4 | \(\Z/21\Z\) | not in database |
$12$ | deg 12 | \(\Z/28\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 127 |
---|---|---|---|---|---|
Reduction type | split | split | ord | ord | split |
$\lambda$-invariant(s) | 5 | 3 | 0 | 2 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 11$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.