Show commands for:
SageMath
sage: E = EllipticCurve("cl1")
sage: E.isogeny_class()
Elliptic curves in class 76230cl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
76230.ci3 | 76230cl1 | [1, -1, 0, -3834, -56732] | [2] | 163840 | \(\Gamma_0(N)\)-optimal |
76230.ci2 | 76230cl2 | [1, -1, 0, -25614, 1541920] | [2, 2] | 327680 | |
76230.ci4 | 76230cl3 | [1, -1, 0, 7056, 5181358] | [2] | 655360 | |
76230.ci1 | 76230cl4 | [1, -1, 0, -406764, 99954850] | [2] | 655360 |
Rank
sage: E.rank()
The elliptic curves in class 76230cl have rank \(1\).
Complex multiplication
The elliptic curves in class 76230cl do not have complex multiplication.Modular form 76230.2.a.cl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.