Properties

Label 76050cq
Number of curves $4$
Conductor $76050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 76050cq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76050cq do not have complex multiplication.

Modular form 76050.2.a.cq

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{7} - q^{8} + 2 q^{11} + 2 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 76050cq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76050.y4 76050cq1 \([1, -1, 0, -114867, 20411041]\) \(-24389/12\) \(-82470556898437500\) \([2]\) \(614400\) \(1.9512\) \(\Gamma_0(N)\)-optimal
76050.y2 76050cq2 \([1, -1, 0, -2016117, 1102222291]\) \(131872229/18\) \(123705835347656250\) \([2]\) \(1228800\) \(2.2978\)  
76050.y3 76050cq3 \([1, -1, 0, -1065492, -2033889584]\) \(-19465109/248832\) \(-1710109467846000000000\) \([2]\) \(3072000\) \(2.7559\)  
76050.y1 76050cq4 \([1, -1, 0, -31485492, -67771509584]\) \(502270291349/1889568\) \(12986143771455562500000\) \([2]\) \(6144000\) \(3.1025\)