Properties

Label 76050bp
Number of curves $1$
Conductor $76050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bp1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 76050bp1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 76050bp do not have complex multiplication.

Modular form 76050.2.a.bp

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{7} - q^{8} + q^{11} + 3 q^{14} + q^{16} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 76050bp

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76050.r1 76050bp1 \([1, -1, 0, -30042, -4759884]\) \(-1557701041/4199040\) \(-8083217610000000\) \([]\) \(516096\) \(1.7398\) \(\Gamma_0(N)\)-optimal