# Properties

 Label 7605.m2 Conductor $7605$ Discriminant $-1.432\times 10^{12}$ j-invariant $$\frac{7077888}{10985}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2+y=x^3+2028x-45588$$ y^2+y=x^3+2028x-45588 (homogenize, simplify) $$y^2z+yz^2=x^3+2028xz^2-45588z^3$$ y^2z+yz^2=x^3+2028xz^2-45588z^3 (dehomogenize, simplify) $$y^2=x^3+32448x-2917616$$ y^2=x^3+32448x-2917616 (homogenize, minimize)

sage: E = EllipticCurve([0, 0, 1, 2028, -45588])

gp: E = ellinit([0, 0, 1, 2028, -45588])

magma: E := EllipticCurve([0, 0, 1, 2028, -45588]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$7605$$ = $3^{2} \cdot 5 \cdot 13^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-1431607415355$ = $-1 \cdot 3^{3} \cdot 5 \cdot 13^{9}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{7077888}{10985}$$ = $2^{18} \cdot 3^{3} \cdot 5^{-1} \cdot 13^{-3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.0177600652721895670581464346\dots$ Stable Faltings height: $-0.53936768562560622381740859541\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $0.45030536770891224004526850326\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $4$  = $2\cdot1\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.8012214708356489601810740130$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 2 q^{4} + q^{5} + q^{7} - 3 q^{11} + 4 q^{16} + 3 q^{17} + 4 q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 8064 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $2$ $III$ Additive 1 2 3 0
$5$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$13$ $2$ $I_{3}^{*}$ Additive 1 2 9 3

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 3.4.0.1
sage: gens = [[385, 6, 384, 7], [3, 4, 8, 11], [4, 3, 9, 7], [66, 331, 133, 84], [1, 0, 6, 1], [157, 6, 81, 19], [89, 384, 267, 371], [1, 6, 0, 1]]

sage: GL(2,Integers(390)).subgroup(gens)

magma: Gens := [[385, 6, 384, 7], [3, 4, 8, 11], [4, 3, 9, 7], [66, 331, 133, 84], [1, 0, 6, 1], [157, 6, 81, 19], [89, 384, 267, 371], [1, 6, 0, 1]];

magma: sub<GL(2,Integers(390))|Gens>;

The image of the adelic Galois representation has level $390$, index $16$, genus $0$, and generators

$\left(\begin{array}{rr} 385 & 6 \\ 384 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 66 & 331 \\ 133 & 84 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 157 & 6 \\ 81 & 19 \end{array}\right),\left(\begin{array}{rr} 89 & 384 \\ 267 & 371 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ss add split ord ord add ord ord ord ord ord ord ord ord ord 2,3 - 1 2 0 - 0 0 0 0 0 4 0 0 0 0,0 - 0 0 0 - 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 7605.m consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{13})$$ $$\Z/3\Z$$ Not in database $3$ 3.1.780.1 $$\Z/2\Z$$ Not in database $6$ 6.0.118638000.1 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $6$ 6.0.3003024375.2 $$\Z/3\Z$$ Not in database $6$ 6.2.7909200.1 $$\Z/6\Z$$ Not in database $12$ deg 12 $$\Z/4\Z$$ Not in database $12$ deg 12 $$\Z/3\Z \oplus \Z/3\Z$$ Not in database $12$ 12.0.14074975044000000.3 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $18$ 18.6.4116688070291691991155312523161328125.1 $$\Z/9\Z$$ Not in database $18$ 18.0.2773170224564301042975000000000000.3 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.