Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3+2028x-45588\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+2028xz^2-45588z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+32448x-2917616\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 7605 \) | = | $3^{2} \cdot 5 \cdot 13^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-1431607415355 $ | = | $-1 \cdot 3^{3} \cdot 5 \cdot 13^{9} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{7077888}{10985} \) | = | $2^{18} \cdot 3^{3} \cdot 5^{-1} \cdot 13^{-3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.0177600652721895670581464346\dots$ | ||
Stable Faltings height: | $-0.53936768562560622381740859541\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.45030536770891224004526850326\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 4 $ = $ 2\cdot1\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 1.8012214708356489601810740130 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 8064 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $III$ | Additive | 1 | 2 | 3 | 0 |
$5$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $2$ | $I_{3}^{*}$ | Additive | 1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 3.4.0.1 |
The image of the adelic Galois representation has level $390$, index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 385 & 6 \\ 384 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 66 & 331 \\ 133 & 84 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 157 & 6 \\ 81 & 19 \end{array}\right),\left(\begin{array}{rr} 89 & 384 \\ 267 & 371 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | add | split | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2,3 | - | 1 | 2 | 0 | - | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
$\mu$-invariant(s) | 0,0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 7605.m
consists of 2 curves linked by isogenies of
degree 3.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{13}) \) | \(\Z/3\Z\) | Not in database |
$3$ | 3.1.780.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.118638000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$6$ | 6.0.3003024375.2 | \(\Z/3\Z\) | Not in database |
$6$ | 6.2.7909200.1 | \(\Z/6\Z\) | Not in database |
$12$ | deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | Not in database |
$12$ | 12.0.14074975044000000.3 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$18$ | 18.6.4116688070291691991155312523161328125.1 | \(\Z/9\Z\) | Not in database |
$18$ | 18.0.2773170224564301042975000000000000.3 | \(\Z/6\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.