Show commands for:
SageMath
sage: E = EllipticCurve("7605.g1")
sage: E.isogeny_class()
Elliptic curves in class 7605.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
7605.g1 | 7605q7 | [1, -1, 1, -3285392, 2292896454] | [2] | 73728 | |
7605.g2 | 7605q5 | [1, -1, 1, -205367, 35854134] | [2, 2] | 36864 | |
7605.g3 | 7605q8 | [1, -1, 1, -167342, 49512714] | [2] | 73728 | |
7605.g4 | 7605q3 | [1, -1, 1, -121712, -16313124] | [2] | 18432 | |
7605.g5 | 7605q4 | [1, -1, 1, -15242, 338784] | [2, 2] | 18432 | |
7605.g6 | 7605q2 | [1, -1, 1, -7637, -251364] | [2, 2] | 9216 | |
7605.g7 | 7605q1 | [1, -1, 1, -32, -11046] | [2] | 4608 | \(\Gamma_0(N)\)-optimal |
7605.g8 | 7605q6 | [1, -1, 1, 53203, 2501646] | [2] | 36864 |
Rank
sage: E.rank()
The elliptic curves in class 7605.g have rank \(1\).
Modular form 7605.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.