Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 760.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
760.d1 | 760a2 | \([0, -1, 0, -20, 20]\) | \(3631696/1805\) | \(462080\) | \([2]\) | \(128\) | \(-0.22008\) | |
760.d2 | 760a1 | \([0, -1, 0, 5, 0]\) | \(702464/475\) | \(-7600\) | \([2]\) | \(64\) | \(-0.56666\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 760.d have rank \(0\).
Complex multiplication
The elliptic curves in class 760.d do not have complex multiplication.Modular form 760.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.