Properties

Label 76.a
Number of curves $1$
Conductor $76$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 76.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
76.a1 76a1 \([0, -1, 0, -21, -31]\) \(-4194304/19\) \(-4864\) \([]\) \(6\) \(-0.44093\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 76.a1 has rank \(0\).

Complex multiplication

The elliptic curves in class 76.a do not have complex multiplication.

Modular form 76.2.a.a

sage: E.q_eigenform(10)
 
\(q + 2q^{3} - q^{5} - 3q^{7} + q^{9} + 5q^{11} - 4q^{13} - 2q^{15} - 3q^{17} - q^{19} + O(q^{20})\)  Toggle raw display