Show commands for:
SageMath
sage: E = EllipticCurve("cy1")
sage: E.isogeny_class()
Elliptic curves in class 75810cy
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
75810.cr3 | 75810cy1 | [1, 0, 0, -1271, 10905] | [2] | 115200 | \(\Gamma_0(N)\)-optimal |
75810.cr2 | 75810cy2 | [1, 0, 0, -8491, -293779] | [2, 2] | 230400 | |
75810.cr4 | 75810cy3 | [1, 0, 0, 2339, -989065] | [2] | 460800 | |
75810.cr1 | 75810cy4 | [1, 0, 0, -134841, -19069389] | [2] | 460800 |
Rank
sage: E.rank()
The elliptic curves in class 75810cy have rank \(0\).
Complex multiplication
The elliptic curves in class 75810cy do not have complex multiplication.Modular form 75810.2.a.cy
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.