Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 75712z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
75712.bw4 | 75712z1 | [0, 0, 0, 676, 35152] | [2] | 73728 | \(\Gamma_0(N)\)-optimal |
75712.bw3 | 75712z2 | [0, 0, 0, -12844, 527280] | [2, 2] | 147456 | |
75712.bw2 | 75712z3 | [0, 0, 0, -39884, -2425488] | [2] | 294912 | |
75712.bw1 | 75712z4 | [0, 0, 0, -202124, 34976240] | [2] | 294912 |
Rank
sage: E.rank()
The elliptic curves in class 75712z have rank \(0\).
Complex multiplication
The elliptic curves in class 75712z do not have complex multiplication.Modular form 75712.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.