Properties

Label 75712cx
Number of curves $2$
Conductor $75712$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 75712cx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 75712cx do not have complex multiplication.

Modular form 75712.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} - 4 q^{5} + q^{7} + q^{9} - 8 q^{15} - 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 75712cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
75712.cn2 75712cx1 \([0, -1, 0, -225, 71681]\) \(-4/7\) \(-2214308282368\) \([2]\) \(150528\) \(1.0478\) \(\Gamma_0(N)\)-optimal
75712.cn1 75712cx2 \([0, -1, 0, -27265, 1721121]\) \(3543122/49\) \(31000315953152\) \([2]\) \(301056\) \(1.3944\)