Properties

Label 75150l
Number of curves 2
Conductor 75150
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("75150.o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 75150l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
75150.o2 75150l1 [1, -1, 0, -11367, 580041] [2] 221184 \(\Gamma_0(N)\)-optimal
75150.o1 75150l2 [1, -1, 0, -193617, 32838291] [2] 442368  

Rank

sage: E.rank()
 

The elliptic curves in class 75150l have rank \(1\).

Modular form 75150.2.a.o

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{4} - q^{8} + 4q^{13} + q^{16} + 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.