# Properties

 Label 75150bq Number of curves 2 Conductor 75150 CM no Rank 1 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("75150.bj1")

sage: E.isogeny_class()

## Elliptic curves in class 75150bq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
75150.bj1 75150bq1 [1, -1, 1, -410, 3017] [2] 46080 $$\Gamma_0(N)$$-optimal
75150.bj2 75150bq2 [1, -1, 1, 490, 13817] [2] 92160

## Rank

sage: E.rank()

The elliptic curves in class 75150bq have rank $$1$$.

## Modular form 75150.2.a.bj

sage: E.q_eigenform(10)

$$q + q^{2} + q^{4} + q^{8} - 2q^{11} + 6q^{13} + q^{16} - 4q^{17} - 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.