# Properties

 Label 75150.b2 Conductor 75150 Discriminant -7957712172656250 j-invariant $$\frac{10758425855}{27944778}$$ CM no Rank 0 Torsion Structure $$\Z/{3}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 0, 30258, 3776166]); // or

magma: E := EllipticCurve("75150y2");

sage: E = EllipticCurve([1, -1, 0, 30258, 3776166]) # or

sage: E = EllipticCurve("75150y2")

gp: E = ellinit([1, -1, 0, 30258, 3776166]) \\ or

gp: E = ellinit("75150y2")

$$y^2 + x y = x^{3} - x^{2} + 30258 x + 3776166$$

## Mordell-Weil group structure

$$\Z/{3}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(19, 2078\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(19, 2078\right)$$, $$\left(19, -2097\right)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$75150$$ = $$2 \cdot 3^{2} \cdot 5^{2} \cdot 167$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-7957712172656250$$ = $$-1 \cdot 2 \cdot 3^{7} \cdot 5^{8} \cdot 167^{3}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{10758425855}{27944778}$$ = $$2^{-1} \cdot 3^{-1} \cdot 5 \cdot 167^{-3} \cdot 1291^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.290811224991$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$18$$  = $$1\cdot2\cdot3\cdot3$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$3$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 75150.2.a.b

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{4} - 4q^{7} - q^{8} - 6q^{11} - q^{13} + 4q^{14} + q^{16} + 6q^{17} - q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 708480 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$0.581622449982$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$3$$ $$2$$ $$I_1^{*}$$ Additive -1 2 7 1
$$5$$ $$3$$ $$IV^{*}$$ Additive -1 2 8 0
$$167$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 167 nonsplit add add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss split 2 - - 0 0 0 0 0 0 0 0 0 0 0 0,0 1 0 - - 0 0 0 0 0 0 0 0 0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3.
Its isogeny class 75150.b consists of 2 curves linked by isogenies of degree 3.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.100200.1 $$\Z/6\Z$$ Not in database
6 6.0.1771470000.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database
6.0.40240480320000.1 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.