Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, 874, -5227])

gp: E = ellinit([1, 0, 1, 874, -5227])

magma: E := EllipticCurve([1, 0, 1, 874, -5227]);

$$y^2+xy+y=x^3+874x-5227$$ ## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(\frac{23}{4}, -\frac{27}{8}\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E); ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$75$$ = $$3 \cdot 5^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-54931640625$$ = $$-1 \cdot 3^{2} \cdot 5^{14}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{4733169839}{3515625}$$ = $$3^{-2} \cdot 5^{-8} \cdot 23^{3} \cdot 73^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.74901497441417905456539923018\dots$$ Stable Faltings height: $$-0.055703981802871132734980436433\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.62636872242974274728715805032\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$8$$  = $$2\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{3} - q^{4} + q^{6} - 3q^{8} + q^{9} - 4q^{11} - q^{12} + 2q^{13} - q^{16} - 2q^{17} + q^{18} + 4q^{19} + O(q^{20})$$ For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 48 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.2527374448594854945743161006323838319$$

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$5$$ $$4$$ $$I_8^{*}$$ Additive 1 2 14 8

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X195f.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 14 \\ 8 & 7 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 8 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 3 \\ 0 & 1 \end{array}\right)$ and has index 96.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 5 ordinary split add 1 1 - 2 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 75.b consists of 4 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-1})$$ $$\Z/2\Z \times \Z/2\Z$$ 2.0.4.1-5625.3-b5 $2$ $$\Q(\sqrt{5})$$ $$\Z/8\Z$$ 2.2.5.1-45.1-a4 $2$ $$\Q(\sqrt{-5})$$ $$\Z/4\Z$$ Not in database $4$ $$\Q(i, \sqrt{5})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{-5}, \sqrt{-6})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(\sqrt{-5}, \sqrt{6})$$ $$\Z/8\Z$$ Not in database $4$ 4.2.3600.1 $$\Z/16\Z$$ Not in database $8$ 8.0.3317760000.9 $$\Z/4\Z \times \Z/8\Z$$ Not in database $8$ 8.0.40960000.2 $$\Z/2\Z \times \Z/16\Z$$ Not in database $8$ 8.0.207360000.5 $$\Z/2\Z \times \Z/16\Z$$ Not in database $8$ 8.2.2767921875.1 $$\Z/6\Z$$ Not in database $16$ 16.0.176120502681600000000.6 $$\Z/4\Z \times \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/32\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.