Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -1, 23]); // or
magma: E := EllipticCurve("75b1");
sage: E = EllipticCurve([1, 0, 1, -1, 23]) # or
sage: E = EllipticCurve("75b1")
gp: E = ellinit([1, 0, 1, -1, 23]) \\ or
gp: E = ellinit("75b1")

$$y^2 + x y + y = x^{3} - x + 23$$

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp: elltors(E)

$$\left(-3, 1\right)$$

## Integral points

magma: IntegralPoints(E);
sage: E.integral_points()

$$\left(-3, 1\right)$$

Note: only one of each pair $\pm P$ is listed.

## Invariants

 magma: Conductor(E); sage: E.conductor().factor() gp: ellglobalred(E) Conductor: $$75$$ = $$3 \cdot 5^{2}$$ magma: Discriminant(E); sage: E.discriminant().factor() gp: E.disc Discriminant: $$-234375$$ = $$-1 \cdot 3 \cdot 5^{7}$$ magma: jInvariant(E); sage: E.j_invariant().factor() gp: E.j j-invariant: $$-\frac{1}{15}$$ = $$-1 \cdot 3^{-1} \cdot 5^{-1}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E); sage: E.rank() Rank: $$0$$ magma: Regulator(E); sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E); sage: E.period_lattice().omega() gp: E.omega Real period: $$2.50547488972$$ magma: TamagawaNumbers(E); sage: E.tamagawa_numbers() gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$2$$  = $$1\cdot2$$ magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp: elltors(E) Torsion order: $$2$$ magma: MordellWeilShaInformation(E); sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form75.2.a.b

magma: ModularForm(E);
sage: E.q_eigenform(20)
gp: xy = elltaniyama(E);
gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q + q^{2} + q^{3} - q^{4} + q^{6} - 3q^{8} + q^{9} - 4q^{11} - q^{12} + 2q^{13} - q^{16} - 2q^{17} + q^{18} + 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E); sage: E.modular_degree() Modular degree: 6 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
sage: r = E.rank();
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: ar = ellanalyticrank(E);
gp: ar/factorial(ar)

$$L(E,1)$$ ≈ $$1.25273744486$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
sage: E.local_data()
gp: ellglobalred(E)
prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1
$$5$$ $$2$$ $$I_1^{*}$$ Additive 1 2 7 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X240m.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^5\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 16 & 1 \end{array}\right)$ and has index 96.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: rho = E.galois_representation();
sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 5 ordinary split add 1 1 - 0 0 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4, 8 and 16.
Its isogeny class 75.b consists of 8 curves linked by isogenies of degrees dividing 16.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{5})$$ $$\Z/8\Z$$ 2.2.5.1-45.1-a3
$$\Q(\sqrt{-15})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-3})$$ $$\Z/4\Z$$ 2.0.3.1-1875.1-b2
4 $$\Q(\zeta_{15})^+$$ $$\Z/16\Z$$ 4.4.1125.1-45.1-b9
$$\Q(\zeta_{5})$$ $$\Z/16\Z$$ Not in database
$$\Q(\sqrt{-3}, \sqrt{5})$$ $$\Z/2\Z \times \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.