Learn more

Refine search


Results (1-50 of 122 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
74480.a1 74480.a \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -15043, 2814658]$ \(y^2=x^3-15043x+2814658\) 2660.2.0.? $[ ]$
74480.b1 74480.b \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.488934237$ $[0, 0, 0, 530033, -11187974]$ \(y^2=x^3+530033x-11187974\) 2660.2.0.? $[(1442, 61250)]$
74480.c1 74480.c \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 3773, -33614]$ \(y^2=x^3+3773x-33614\) 2660.2.0.? $[ ]$
74480.d1 74480.d \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.043944635$ $[0, 0, 0, -37387, 2971066]$ \(y^2=x^3-37387x+2971066\) 152.2.0.? $[(37, 1280)]$
74480.e1 74480.e \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -63716, -6211220]$ \(y^2=x^3+x^2-63716x-6211220\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? $[ ]$
74480.e2 74480.e \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -3691, -112680]$ \(y^2=x^3+x^2-3691x-112680\) 2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? $[ ]$
74480.f1 74480.f \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -20416356, -35513927156]$ \(y^2=x^3+x^2-20416356x-35513927156\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? $[ ]$
74480.f2 74480.f \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1275731, -555489656]$ \(y^2=x^3+x^2-1275731x-555489656\) 2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? $[ ]$
74480.g1 74480.g \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.292242535$ $[0, 1, 0, 58539, 13501039]$ \(y^2=x^3+x^2+58539x+13501039\) 38.2.0.a.1 $[(114, 4655)]$
74480.h1 74480.h \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.687995951$ $[0, 1, 0, -54896, 19866580]$ \(y^2=x^3+x^2-54896x+19866580\) 5320.2.0.? $[(380, 7350)]$
74480.i1 74480.i \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -336156, -1680680]$ \(y^2=x^3+x^2-336156x-1680680\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 30.24.0-6.a.1.4, 76.6.0.?, $\ldots$ $[ ]$
74480.i2 74480.i \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -228356, 41925400]$ \(y^2=x^3+x^2-228356x+41925400\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 30.24.0-6.a.1.3, 76.6.0.?, $\ldots$ $[ ]$
74480.i3 74480.i \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -13981, 679650]$ \(y^2=x^3+x^2-13981x+679650\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 38.6.0.b.1, 60.24.0-6.a.1.5, $\ldots$ $[ ]$
74480.i4 74480.i \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 84019, -168050]$ \(y^2=x^3+x^2+84019x-168050\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 38.6.0.b.1, 60.24.0-6.a.1.9, $\ldots$ $[ ]$
74480.j1 74480.j \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.162912316$ $[0, 1, 0, -8836, 315384]$ \(y^2=x^3+x^2-8836x+315384\) 2.3.0.a.1, 76.6.0.?, 140.6.0.?, 2660.12.0.? $[(-25, 722)]$
74480.j2 74480.j \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.581456158$ $[0, 1, 0, -261, 10114]$ \(y^2=x^3+x^2-261x+10114\) 2.3.0.a.1, 38.6.0.b.1, 140.6.0.?, 2660.12.0.? $[(2, 98)]$
74480.k1 74480.k \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.177761090$ $[0, 1, 0, -261, 16435]$ \(y^2=x^3+x^2-261x+16435\) 38.2.0.a.1 $[(-18, 125)]$
74480.l1 74480.l \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -1281856, 584225844]$ \(y^2=x^3+x^2-1281856x+584225844\) 3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? $[ ]$
74480.l2 74480.l \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 6871744, 1154476084]$ \(y^2=x^3+x^2+6871744x+1154476084\) 3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? $[ ]$
74480.m1 74480.m \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.449010357$ $[0, 1, 0, -1731, 23344]$ \(y^2=x^3+x^2-1731x+23344\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? $[(212, 3038)]$
74480.m2 74480.m \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.724505178$ $[0, 1, 0, 2924, 131340]$ \(y^2=x^3+x^2+2924x+131340\) 2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? $[(-26, 196)]$
74480.n1 74480.n \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.177836189$ $[0, 1, 0, -1325, 21223]$ \(y^2=x^3+x^2-1325x+21223\) 3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? $[(-29, 190)]$
74480.n2 74480.n \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.533508569$ $[0, 1, 0, 9315, -119225]$ \(y^2=x^3+x^2+9315x-119225\) 3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? $[(55, 750)]$
74480.o1 74480.o \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.503539496$ $[0, 1, 0, -2760, 274420]$ \(y^2=x^3+x^2-2760x+274420\) 3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? $[(198, 2744)]$
74480.o2 74480.o \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.167846498$ $[0, 1, 0, 24680, -7156332]$ \(y^2=x^3+x^2+24680x-7156332\) 3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? $[(1766, 74480)]$
74480.p1 74480.p \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.471317823$ $[0, 1, 0, 146200, -9627500]$ \(y^2=x^3+x^2+146200x-9627500\) 5320.2.0.? $[(100, 2450)]$
74480.q1 74480.q \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.528902505$ $[0, 1, 0, -4405, 111075]$ \(y^2=x^3+x^2-4405x+111075\) 3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? $[(38, 1)]$
74480.q2 74480.q \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.509634168$ $[0, 1, 0, -2165, 225763]$ \(y^2=x^3+x^2-2165x+225763\) 3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? $[(46, 475)]$
74480.r1 74480.r \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -12805, 620703]$ \(y^2=x^3+x^2-12805x+620703\) 38.2.0.a.1 $[ ]$
74480.s1 74480.s \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -39216, -11379584]$ \(y^2=x^3-x^2-39216x-11379584\) 20.2.0.a.1 $[ ]$
74480.t1 74480.t \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.469089256$ $[0, -1, 0, -8416, -322384]$ \(y^2=x^3-x^2-8416x-322384\) 2660.2.0.? $[(110, 266)]$
74480.u1 74480.u \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.606871381$ $[0, -1, 0, -1976, 44080]$ \(y^2=x^3-x^2-1976x+44080\) 2660.2.0.? $[(26, 98)]$
74480.v1 74480.v \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $26.22462887$ $[0, -1, 0, -13061701, -23859998035]$ \(y^2=x^3-x^2-13061701x-23859998035\) 5.12.0.a.2, 20.24.0-5.a.2.3, 70.24.1.d.2, 140.48.1.? $[(267390838512076/230691, 2371946088350510914843/230691)]$
74480.v2 74480.v \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $5.244925775$ $[0, -1, 0, -164901, 147751885]$ \(y^2=x^3-x^2-164901x+147751885\) 5.12.0.a.1, 20.24.0-5.a.1.3, 70.24.1.d.1, 140.48.1.? $[(76, 11647)]$
74480.w1 74480.w \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.474041001$ $[0, -1, 0, -5738161, 5293072541]$ \(y^2=x^3-x^2-5738161x+5293072541\) 70.2.0.a.1 $[(11812/3, 123823/3)]$
74480.x1 74480.x \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.691374203$ $[0, -1, 0, -215861, 39021865]$ \(y^2=x^3-x^2-215861x+39021865\) 70.2.0.a.1 $[(-16, 6517)]$
74480.y1 74480.y \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.716420071$ $[0, -1, 0, 50160, 5065600]$ \(y^2=x^3-x^2+50160x+5065600\) 2660.2.0.? $[(810, 24010)]$
74480.z1 74480.z \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -6925, -301615]$ \(y^2=x^3-x^2-6925x-301615\) 70.2.0.a.1 $[ ]$
74480.ba1 74480.ba \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1972920, 2139846640]$ \(y^2=x^3-x^2+1972920x+2139846640\) 2660.2.0.? $[ ]$
74480.bb1 74480.bb \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.462438347$ $[0, -1, 0, -4322600, -3545690000]$ \(y^2=x^3-x^2-4322600x-3545690000\) 3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 $[(2450, 23750)]$
74480.bb2 74480.bb \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $7.387315042$ $[0, -1, 0, 19687400, -13649098000]$ \(y^2=x^3-x^2+19687400x-13649098000\) 3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 $[(125930/13, 83199670/13)]$
74480.bc1 74480.bc \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1160, 28400]$ \(y^2=x^3-x^2+1160x+28400\) 152.2.0.? $[ ]$
74480.bd1 74480.bd \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.418365174$ $[0, -1, 0, -799080, 275554672]$ \(y^2=x^3-x^2-799080x+275554672\) 2660.2.0.? $[(474, 1750)]$
74480.be1 74480.be \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 32520, -6174608]$ \(y^2=x^3-x^2+32520x-6174608\) 20.2.0.a.1 $[ ]$
74480.bf1 74480.bf \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.113816785$ $[0, -1, 0, 75, -2435]$ \(y^2=x^3-x^2+75x-2435\) 70.2.0.a.1 $[(12, 7)]$
74480.bg1 74480.bg \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -110560, 15445760]$ \(y^2=x^3-x^2-110560x+15445760\) 2660.2.0.? $[ ]$
74480.bh1 74480.bh \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -7798448, 8411836272]$ \(y^2=x^3-7798448x+8411836272\) 38.2.0.a.1 $[ ]$
74480.bi1 74480.bi \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -12296449403, 524828854740218]$ \(y^2=x^3-12296449403x+524828854740218\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 56.12.0-4.c.1.5, 152.12.0.?, $\ldots$ $[ ]$
74480.bi2 74480.bi \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -770208803, 8162781655378]$ \(y^2=x^3-770208803x+8162781655378\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.2, 140.24.0.?, $\ldots$ $[ ]$
74480.bi3 74480.bi \( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -768528103, 8200450512198]$ \(y^2=x^3-768528103x+8200450512198\) 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 76.12.0.?, 140.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results