| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 74480.a1 |
74480bw1 |
74480.a |
74480bw |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{16} \cdot 5^{5} \cdot 7^{7} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.657940$ |
$-781229961/6650000$ |
$0.89242$ |
$3.85298$ |
$[0, 0, 0, -15043, 2814658]$ |
\(y^2=x^3-15043x+2814658\) |
2660.2.0.? |
$[ ]$ |
$1$ |
| 74480.b1 |
74480cz1 |
74480.b |
74480cz |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{11} \cdot 7^{9} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1.488934237$ |
$1$ |
|
$2$ |
$2128896$ |
$2.331657$ |
$546769443677616/318212890625$ |
$1.02172$ |
$4.56003$ |
$[0, 0, 0, 530033, -11187974]$ |
\(y^2=x^3+530033x-11187974\) |
2660.2.0.? |
$[(1442, 61250)]$ |
$1$ |
| 74480.c1 |
74480u1 |
74480.c |
74480u |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207872$ |
$1.105341$ |
$143748/95$ |
$0.68539$ |
$3.23761$ |
$[0, 0, 0, 3773, -33614]$ |
\(y^2=x^3+3773x-33614\) |
2660.2.0.? |
$[ ]$ |
$1$ |
| 74480.d1 |
74480da1 |
74480.d |
74480da |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{23} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1.043944635$ |
$1$ |
|
$4$ |
$494208$ |
$1.561325$ |
$-11993263569/972800$ |
$0.93850$ |
$3.86262$ |
$[0, 0, 0, -37387, 2971066]$ |
\(y^2=x^3-37387x+2971066\) |
152.2.0.? |
$[(37, 1280)]$ |
$1$ |
| 74480.e1 |
74480f2 |
74480.e |
74480f |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5 \cdot 7^{8} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$245760$ |
$1.422228$ |
$949834267216/88445$ |
$0.85648$ |
$3.99350$ |
$[0, 1, 0, -63716, -6211220]$ |
\(y^2=x^3+x^2-63716x-6211220\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[ ]$ |
$1$ |
| 74480.e2 |
74480f1 |
74480.e |
74480f |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{10} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$122880$ |
$1.075655$ |
$-2955053056/1140475$ |
$0.82173$ |
$3.27731$ |
$[0, 1, 0, -3691, -112680]$ |
\(y^2=x^3+x^2-3691x-112680\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[ ]$ |
$1$ |
| 74480.f1 |
74480e2 |
74480.f |
74480e |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{7} \cdot 7^{6} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$2580480$ |
$2.595501$ |
$31248575021659890256/28203125$ |
$1.01626$ |
$5.53642$ |
$[0, 1, 0, -20416356, -35513927156]$ |
\(y^2=x^3+x^2-20416356x-35513927156\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[ ]$ |
$1$ |
| 74480.f2 |
74480e1 |
74480.f |
74480e |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{14} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$1290240$ |
$2.248928$ |
$-121981271658244096/115966796875$ |
$1.08046$ |
$4.79506$ |
$[0, 1, 0, -1275731, -555489656]$ |
\(y^2=x^3+x^2-1275731x-555489656\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[ ]$ |
$1$ |
| 74480.g1 |
74480ba1 |
74480.g |
74480ba |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{8} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.292242535$ |
$1$ |
|
$4$ |
$725760$ |
$1.937086$ |
$15032385536/61902475$ |
$1.12757$ |
$4.13225$ |
$[0, 1, 0, 58539, 13501039]$ |
\(y^2=x^3+x^2+58539x+13501039\) |
38.2.0.a.1 |
$[(114, 4655)]$ |
$1$ |
| 74480.h1 |
74480bk1 |
74480.h |
74480bk |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{17} \cdot 5^{7} \cdot 7^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$3.687995951$ |
$1$ |
|
$2$ |
$645120$ |
$1.983866$ |
$-37966934881/332500000$ |
$0.90524$ |
$4.20154$ |
$[0, 1, 0, -54896, 19866580]$ |
\(y^2=x^3+x^2-54896x+19866580\) |
5320.2.0.? |
$[(380, 7350)]$ |
$1$ |
| 74480.i1 |
74480bt4 |
74480.i |
74480bt |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5 \cdot 7^{9} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$7980$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$995328$ |
$2.217346$ |
$139482396527056/80683685915$ |
$1.01853$ |
$4.43825$ |
$[0, 1, 0, -336156, -1680680]$ |
\(y^2=x^3+x^2-336156x-1680680\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 30.24.0-6.a.1.4, 76.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.i2 |
74480bt2 |
74480.i |
74480bt |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{3} \cdot 7^{7} \cdot 19^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$7980$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$331776$ |
$1.668041$ |
$43725490482256/315875$ |
$0.89057$ |
$4.33485$ |
$[0, 1, 0, -228356, 41925400]$ |
\(y^2=x^3+x^2-228356x+41925400\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 30.24.0-6.a.1.3, 76.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.i3 |
74480bt1 |
74480.i |
74480bt |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{6} \cdot 7^{8} \cdot 19 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$7980$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$165888$ |
$1.321466$ |
$-160568836096/14546875$ |
$0.91323$ |
$3.60086$ |
$[0, 1, 0, -13981, 679650]$ |
\(y^2=x^3+x^2-13981x+679650\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 38.6.0.b.1, 60.24.0-6.a.1.5, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.i4 |
74480bt3 |
74480.i |
74480bt |
$4$ |
$6$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{12} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$7980$ |
$96$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$497664$ |
$1.870773$ |
$34845190651904/20173862275$ |
$1.10743$ |
$4.06747$ |
$[0, 1, 0, 84019, -168050]$ |
\(y^2=x^3+x^2+84019x-168050\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 38.6.0.b.1, 60.24.0-6.a.1.9, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.j1 |
74480bj2 |
74480.j |
74480bj |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5 \cdot 7^{7} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2660$ |
$12$ |
$0$ |
$3.162912316$ |
$1$ |
|
$3$ |
$110592$ |
$1.069300$ |
$2533446736/12635$ |
$0.78600$ |
$3.46519$ |
$[0, 1, 0, -8836, 315384]$ |
\(y^2=x^3+x^2-8836x+315384\) |
2.3.0.a.1, 76.6.0.?, 140.6.0.?, 2660.12.0.? |
$[(-25, 722)]$ |
$1$ |
| 74480.j2 |
74480bj1 |
74480.j |
74480bj |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{4} \cdot 5^{2} \cdot 7^{8} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2660$ |
$12$ |
$0$ |
$1.581456158$ |
$1$ |
|
$3$ |
$55296$ |
$0.722726$ |
$-1048576/23275$ |
$0.89298$ |
$2.85103$ |
$[0, 1, 0, -261, 10114]$ |
\(y^2=x^3+x^2-261x+10114\) |
2.3.0.a.1, 38.6.0.b.1, 140.6.0.?, 2660.12.0.? |
$[(2, 98)]$ |
$1$ |
| 74480.k1 |
74480z1 |
74480.k |
74480z |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{4} \cdot 7^{4} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.177761090$ |
$1$ |
|
$2$ |
$72960$ |
$0.803474$ |
$-200704/11875$ |
$0.86692$ |
$2.93700$ |
$[0, 1, 0, -261, 16435]$ |
\(y^2=x^3+x^2-261x+16435\) |
38.2.0.a.1 |
$[(-18, 125)]$ |
$1$ |
| 74480.l1 |
74480bu1 |
74480.l |
74480bu |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{3} \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15960$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2488320$ |
$2.424595$ |
$-483385461758641/26693632000$ |
$0.92850$ |
$4.80432$ |
$[0, 1, 0, -1281856, 584225844]$ |
\(y^2=x^3+x^2-1281856x+584225844\) |
3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? |
$[ ]$ |
$1$ |
| 74480.l2 |
74480bu2 |
74480.l |
74480bu |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{17} \cdot 5 \cdot 7^{15} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15960$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7464960$ |
$2.973904$ |
$74469146542554959/44285662466080$ |
$1.00014$ |
$5.24522$ |
$[0, 1, 0, 6871744, 1154476084]$ |
\(y^2=x^3+x^2+6871744x+1154476084\) |
3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? |
$[ ]$ |
$1$ |
| 74480.m1 |
74480n1 |
74480.m |
74480n |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{4} \cdot 5^{3} \cdot 7^{6} \cdot 19^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$3.449010357$ |
$1$ |
|
$3$ |
$73728$ |
$0.821736$ |
$304900096/45125$ |
$0.86112$ |
$3.02930$ |
$[0, 1, 0, -1731, 23344]$ |
\(y^2=x^3+x^2-1731x+23344\) |
2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? |
$[(212, 3038)]$ |
$1$ |
| 74480.m2 |
74480n2 |
74480.m |
74480n |
$2$ |
$2$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$380$ |
$12$ |
$0$ |
$1.724505178$ |
$1$ |
|
$5$ |
$147456$ |
$1.168310$ |
$91765424/296875$ |
$0.86089$ |
$3.30526$ |
$[0, 1, 0, 2924, 131340]$ |
\(y^2=x^3+x^2+2924x+131340\) |
2.3.0.a.1, 20.6.0.c.1, 38.6.0.b.1, 380.12.0.? |
$[(-26, 196)]$ |
$1$ |
| 74480.n1 |
74480cy1 |
74480.n |
74480cy |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{4} \cdot 7^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1596$ |
$16$ |
$0$ |
$0.177836189$ |
$1$ |
|
$6$ |
$62208$ |
$0.780788$ |
$-20524048384/4286875$ |
$0.88413$ |
$2.98531$ |
$[0, 1, 0, -1325, 21223]$ |
\(y^2=x^3+x^2-1325x+21223\) |
3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? |
$[(-29, 190)]$ |
$1$ |
| 74480.n2 |
74480cy2 |
74480.n |
74480cy |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{12} \cdot 7^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1596$ |
$16$ |
$0$ |
$0.533508569$ |
$1$ |
|
$4$ |
$186624$ |
$1.330095$ |
$7125077958656/4638671875$ |
$0.97599$ |
$3.47929$ |
$[0, 1, 0, 9315, -119225]$ |
\(y^2=x^3+x^2+9315x-119225\) |
3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? |
$[(55, 750)]$ |
$1$ |
| 74480.o1 |
74480cx1 |
74480.o |
74480cx |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15960$ |
$16$ |
$0$ |
$0.503539496$ |
$1$ |
|
$4$ |
$165888$ |
$1.271435$ |
$-4826809/65170$ |
$0.92228$ |
$3.43855$ |
$[0, 1, 0, -2760, 274420]$ |
\(y^2=x^3+x^2-2760x+274420\) |
3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? |
$[(198, 2744)]$ |
$1$ |
| 74480.o2 |
74480cx2 |
74480.o |
74480cx |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{15} \cdot 5^{3} \cdot 7^{7} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$15960$ |
$16$ |
$0$ |
$0.167846498$ |
$1$ |
|
$8$ |
$497664$ |
$1.820740$ |
$3449795831/48013000$ |
$0.89276$ |
$4.01955$ |
$[0, 1, 0, 24680, -7156332]$ |
\(y^2=x^3+x^2+24680x-7156332\) |
3.4.0.a.1, 84.8.0.?, 2280.8.0.?, 5320.2.0.?, 15960.16.0.? |
$[(1766, 74480)]$ |
$1$ |
| 74480.p1 |
74480s1 |
74480.p |
74480s |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{11} \cdot 5^{5} \cdot 7^{11} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5320$ |
$2$ |
$0$ |
$1.471317823$ |
$1$ |
|
$4$ |
$768000$ |
$2.023651$ |
$1434315418702/997915625$ |
$0.90878$ |
$4.21560$ |
$[0, 1, 0, 146200, -9627500]$ |
\(y^2=x^3+x^2+146200x-9627500\) |
5320.2.0.? |
$[(100, 2450)]$ |
$1$ |
| 74480.q1 |
74480cw1 |
74480.q |
74480cw |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1596$ |
$16$ |
$0$ |
$1.528902505$ |
$1$ |
|
$2$ |
$62208$ |
$0.689992$ |
$-47109013504/475$ |
$0.90430$ |
$3.27905$ |
$[0, 1, 0, -4405, 111075]$ |
\(y^2=x^3+x^2-4405x+111075\) |
3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? |
$[(38, 1)]$ |
$1$ |
| 74480.q2 |
74480cw2 |
74480.q |
74480cw |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{2} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1596$ |
$16$ |
$0$ |
$0.509634168$ |
$1$ |
|
$4$ |
$186624$ |
$1.239298$ |
$-5594251264/107171875$ |
$0.96672$ |
$3.40373$ |
$[0, 1, 0, -2165, 225763]$ |
\(y^2=x^3+x^2-2165x+225763\) |
3.4.0.a.1, 38.2.0.a.1, 84.8.0.?, 114.8.0.?, 1596.16.0.? |
$[(46, 475)]$ |
$1$ |
| 74480.r1 |
74480co1 |
74480.r |
74480co |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{2} \cdot 7^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$177408$ |
$1.327274$ |
$-3211264/475$ |
$0.79981$ |
$3.58469$ |
$[0, 1, 0, -12805, 620703]$ |
\(y^2=x^3+x^2-12805x+620703\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 74480.s1 |
74480bs1 |
74480.s |
74480bs |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{10} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$451584$ |
$1.890732$ |
$-5764801/45125$ |
$1.04767$ |
$4.10224$ |
$[0, -1, 0, -39216, -11379584]$ |
\(y^2=x^3-x^2-39216x-11379584\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 74480.t1 |
74480k1 |
74480.t |
74480k |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{10} \cdot 5^{5} \cdot 7^{3} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1.469089256$ |
$1$ |
|
$4$ |
$138240$ |
$1.207485$ |
$-187714758172/21434375$ |
$0.95423$ |
$3.46822$ |
$[0, -1, 0, -8416, -322384]$ |
\(y^2=x^3-x^2-8416x-322384\) |
2660.2.0.? |
$[(110, 266)]$ |
$1$ |
| 74480.u1 |
74480bg1 |
74480.u |
74480bg |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5 \cdot 7^{7} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$0.606871381$ |
$1$ |
|
$4$ |
$73728$ |
$0.917654$ |
$-1771561/665$ |
$0.82100$ |
$3.10926$ |
$[0, -1, 0, -1976, 44080]$ |
\(y^2=x^3-x^2-1976x+44080\) |
2660.2.0.? |
$[(26, 98)]$ |
$1$ |
| 74480.v1 |
74480bh2 |
74480.v |
74480bh |
$2$ |
$5$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5 \cdot 7^{7} \cdot 19^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$26.22462887$ |
$1$ |
|
$0$ |
$5760000$ |
$3.124020$ |
$-511416541770305536/214587319023035$ |
$0.98594$ |
$5.46558$ |
$[0, -1, 0, -13061701, -23859998035]$ |
\(y^2=x^3-x^2-13061701x-23859998035\) |
5.12.0.a.2, 20.24.0-5.a.2.3, 70.24.1.d.2, 140.48.1.? |
$[(267390838512076/230691, 2371946088350510914843/230691)]$ |
$1$ |
| 74480.v2 |
74480bh1 |
74480.v |
74480bh |
$2$ |
$5$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{5} \cdot 7^{11} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$5.244925775$ |
$1$ |
|
$2$ |
$1152000$ |
$2.319302$ |
$-1029077364736/18960396875$ |
$0.95599$ |
$4.55903$ |
$[0, -1, 0, -164901, 147751885]$ |
\(y^2=x^3-x^2-164901x+147751885\) |
5.12.0.a.1, 20.24.0-5.a.1.3, 70.24.1.d.1, 140.48.1.? |
$[(76, 11647)]$ |
$1$ |
| 74480.w1 |
74480l1 |
74480.w |
74480l |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5 \cdot 7^{9} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1.474041001$ |
$1$ |
|
$0$ |
$2128896$ |
$2.554264$ |
$-2022644931914752/235229405$ |
$0.96243$ |
$5.19703$ |
$[0, -1, 0, -5738161, 5293072541]$ |
\(y^2=x^3-x^2-5738161x+5293072541\) |
70.2.0.a.1 |
$[(11812/3, 123823/3)]$ |
$1$ |
| 74480.x1 |
74480bi1 |
74480.x |
74480bi |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5^{5} \cdot 7^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1.691374203$ |
$1$ |
|
$2$ |
$483840$ |
$1.900038$ |
$-107677745152/1128125$ |
$0.96525$ |
$4.32140$ |
$[0, -1, 0, -215861, 39021865]$ |
\(y^2=x^3-x^2-215861x+39021865\) |
70.2.0.a.1 |
$[(-16, 6517)]$ |
$1$ |
| 74480.y1 |
74480cv1 |
74480.y |
74480cv |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{11} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$0.716420071$ |
$1$ |
|
$4$ |
$368640$ |
$1.810318$ |
$28962726911/39916625$ |
$0.87484$ |
$3.95833$ |
$[0, -1, 0, 50160, 5065600]$ |
\(y^2=x^3-x^2+50160x+5065600\) |
2660.2.0.? |
$[(810, 24010)]$ |
$1$ |
| 74480.z1 |
74480ci1 |
74480.z |
74480ci |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{8} \cdot 5 \cdot 7^{9} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$138240$ |
$1.251186$ |
$-1219600384/619115$ |
$0.82988$ |
$3.45616$ |
$[0, -1, 0, -6925, -301615]$ |
\(y^2=x^3-x^2-6925x-301615\) |
70.2.0.a.1 |
$[ ]$ |
$1$ |
| 74480.ba1 |
74480ch1 |
74480.ba |
74480ch |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{28} \cdot 5 \cdot 7^{13} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3096576$ |
$2.788330$ |
$1762396940073671/5127312834560$ |
$0.96019$ |
$5.03569$ |
$[0, -1, 0, 1972920, 2139846640]$ |
\(y^2=x^3-x^2+1972920x+2139846640\) |
2660.2.0.? |
$[ ]$ |
$1$ |
| 74480.bb1 |
74480ca1 |
74480.bb |
74480ca |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{16} \cdot 5^{9} \cdot 7^{8} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$2.462438347$ |
$1$ |
|
$4$ |
$2612736$ |
$2.697540$ |
$-378281142378601/11281250000$ |
$0.99770$ |
$5.12573$ |
$[0, -1, 0, -4322600, -3545690000]$ |
\(y^2=x^3-x^2-4322600x-3545690000\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 20.2.0.a.1, 30.8.0-3.a.1.1, 60.16.0-60.a.1.4 |
$[(2450, 23750)]$ |
$1$ |
| 74480.bb2 |
74480ca2 |
74480.bb |
74480ca |
$2$ |
$3$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{24} \cdot 5^{3} \cdot 7^{8} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$7.387315042$ |
$1$ |
|
$0$ |
$7838208$ |
$3.246845$ |
$35739174545711399/24087491072000$ |
$1.04677$ |
$5.52670$ |
$[0, -1, 0, 19687400, -13649098000]$ |
\(y^2=x^3-x^2+19687400x-13649098000\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 20.2.0.a.1, 30.8.0-3.a.1.2, 60.16.0-60.a.1.1 |
$[(125930/13, 83199670/13)]$ |
$1$ |
| 74480.bc1 |
74480cg1 |
74480.bc |
74480cg |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{13} \cdot 5^{2} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$0.921138$ |
$357911/950$ |
$0.81125$ |
$3.03598$ |
$[0, -1, 0, 1160, 28400]$ |
\(y^2=x^3-x^2+1160x+28400\) |
152.2.0.? |
$[ ]$ |
$1$ |
| 74480.bd1 |
74480ct1 |
74480.bd |
74480ct |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{18} \cdot 5^{11} \cdot 7^{3} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$0.418365174$ |
$1$ |
|
$6$ |
$709632$ |
$2.148167$ |
$-40164371037846847/59375000000$ |
$0.97587$ |
$4.67004$ |
$[0, -1, 0, -799080, 275554672]$ |
\(y^2=x^3-x^2-799080x+275554672\) |
2660.2.0.? |
$[(474, 1750)]$ |
$1$ |
| 74480.be1 |
74480cb1 |
74480.be |
74480cb |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{32} \cdot 5 \cdot 7^{4} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$483840$ |
$1.804163$ |
$386731778279/1892679680$ |
$0.95313$ |
$3.99273$ |
$[0, -1, 0, 32520, -6174608]$ |
\(y^2=x^3-x^2+32520x-6174608\) |
20.2.0.a.1 |
$[ ]$ |
$1$ |
| 74480.bf1 |
74480cu1 |
74480.bf |
74480cu |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5 \cdot 7^{3} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$2.113816785$ |
$1$ |
|
$2$ |
$23040$ |
$0.484160$ |
$32768/1805$ |
$0.84924$ |
$2.59380$ |
$[0, -1, 0, 75, -2435]$ |
\(y^2=x^3-x^2+75x-2435\) |
70.2.0.a.1 |
$[(12, 7)]$ |
$1$ |
| 74480.bg1 |
74480cj1 |
74480.bg |
74480cj |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{22} \cdot 5 \cdot 7^{9} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2660$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$537600$ |
$1.847977$ |
$-904231063/97280$ |
$0.84561$ |
$4.15608$ |
$[0, -1, 0, -110560, 15445760]$ |
\(y^2=x^3-x^2-110560x+15445760\) |
2660.2.0.? |
$[ ]$ |
$1$ |
| 74480.bh1 |
74480bn1 |
74480.bh |
74480bn |
$1$ |
$1$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 5^{10} \cdot 7^{10} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2553600$ |
$2.757244$ |
$-45332315836416/185546875$ |
$1.14760$ |
$5.27968$ |
$[0, 0, 0, -7798448, 8411836272]$ |
\(y^2=x^3-7798448x+8411836272\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 74480.bi1 |
74480c4 |
74480.bi |
74480c |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{10} \cdot 5 \cdot 7^{9} \cdot 19^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$26542080$ |
$3.938099$ |
$1706768805632178182685889284/11763185$ |
$1.05504$ |
$7.24811$ |
$[0, 0, 0, -12296449403, 524828854740218]$ |
\(y^2=x^3-12296449403x+524828854740218\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 56.12.0-4.c.1.5, 152.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.bi2 |
74480c3 |
74480.bi |
74480c |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{10} \cdot 5 \cdot 7^{9} \cdot 19^{12} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$5320$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$26542080$ |
$3.938099$ |
$419431409113242476158884/3795835086198466115$ |
$1.03432$ |
$6.50724$ |
$[0, 0, 0, -770208803, 8162781655378]$ |
\(y^2=x^3-770208803x+8162781655378\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.2, 140.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 74480.bi3 |
74480c2 |
74480.bi |
74480c |
$4$ |
$4$ |
\( 2^{4} \cdot 5 \cdot 7^{2} \cdot 19 \) |
\( 2^{8} \cdot 5^{2} \cdot 7^{12} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$2660$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$3$ |
$13271040$ |
$3.591526$ |
$1666766511378391624080336/138372521344225$ |
$1.08367$ |
$6.50666$ |
$[0, 0, 0, -768528103, 8200450512198]$ |
\(y^2=x^3-768528103x+8200450512198\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 76.12.0.?, 140.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |