Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-3853x+80235\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-3853xz^2+80235z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-312120x+59427648\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(62, 289)$ | $1.3793454169788680873775944990$ | $\infty$ |
| $(470, 10115)$ | $3.3440247858236566179335953640$ | $\infty$ |
| $(45, 0)$ | $0$ | $2$ |
Integral points
\( \left(45, 0\right) \), \((62,\pm 289)\), \((77,\pm 496)\), \((181,\pm 2312)\), \((470,\pm 10115)\), \((1197,\pm 41376)\)
Invariants
| Conductor: | $N$ | = | \( 73984 \) | = | $2^{8} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $790939860992$ | = | $2^{15} \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0126340216682139203684897033$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177575$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.245180989545602$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.1671806244350037144646963863$ |
|
| Real period: | $\Omega$ | ≈ | $0.86398484921010738787893771160$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.2007618468675156607519580136 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.200761847 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.863985 \cdot 4.167181 \cdot 8}{2^2} \\ & \approx 7.200761847\end{aligned}$$
Modular invariants
Modular form 73984.2.a.a
For more coefficients, see the Downloads section to the right.
| Modular degree: | 73728 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | -1 | 8 | 15 | 0 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 289 = 17^{2} \) |
| $17$ | additive | $146$ | \( 256 = 2^{8} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 73984p
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256a1, its twist by $136$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.591872.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | 4.0.1775616.2 | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.5326848.6 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.5604999430144.27 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.28375309615104.128 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.0.12611248717824.21 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $8$ | 8.4.113501238460416.12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/18\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $20$ | 20.0.171266783599223561594941863070334451712.1 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | ss | ord | ss | add | ord | ss | ss | ss | ss | ord | ord | ss |
| $\lambda$-invariant(s) | - | 2 | 2,2 | 2,2 | 2 | 2,2 | - | 4 | 2,2 | 2,2 | 2,2 | 2,2 | 2 | 2 | 2,2 |
| $\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | 0 | 0,0 | - | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.