Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-x^2-3853x-80235\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-x^2z-3853xz^2-80235z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-312120x-59427648\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(108, 867)$ | $2.1270682170328075721951506926$ | $\infty$ | 
| $(-45, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-45, 0\right) \), \((108,\pm 867)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 73984 \) | = | $2^{8} \cdot 17^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $790939860992$ | = | $2^{15} \cdot 17^{6} $ | 
     | 
        
| j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0126340216682139203684897033$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177575$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.245180989545602$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 1$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.1270682170328075721951506926$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.61092954571890366244737640768$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L'(E,1)$ | ≈ | $10.395910556359772093232274716 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $4$ = $2^2$ (rounded) | 
     | 
        
BSD formula
$$\begin{aligned} 10.395910556 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.610930 \cdot 2.127068 \cdot 8}{2^2} \\ & \approx 10.395910556\end{aligned}$$
Modular invariants
Modular form 73984.2.a.p
For more coefficients, see the Downloads section to the right.
| Modular degree: | 73728 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $III^{*}$ | additive | 1 | 8 | 15 | 0 | 
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 289 = 17^{2} \) | 
| $17$ | additive | $146$ | \( 256 = 2^{8} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 73984h
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256a1, its twist by $-136$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.591872.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $4$ | 4.2.5326848.7 | \(\Z/6\Z\) | not in database | 
| $4$ | 4.0.1775616.1 | \(\Z/6\Z\) | not in database | 
| $8$ | 8.4.5604999430144.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.28375309615104.129 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $8$ | 8.4.113501238460416.12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $8$ | 8.0.12611248717824.21 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $12$ | deg 12 | \(\Z/18\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database | 
| $20$ | 20.0.171266783599223561594941863070334451712.2 | \(\Z/22\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | ss | ord | ss | add | ord | ss | ss | ss | ss | ord | ord | ss | 
| $\lambda$-invariant(s) | - | 5 | 1,1 | 1,1 | 1 | 3,1 | - | 1 | 1,1 | 1,1 | 1,1 | 1,1 | 1 | 1 | 1,1 | 
| $\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | 0 | 0,0 | - | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.