# Properties

 Label 73689g1 Conductor $73689$ Discriminant $-8.929\times 10^{13}$ j-invariant $$-\frac{36883367257}{6098396283}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 0, -1696, 454711])

gp: E = ellinit([1, 1, 0, -1696, 454711])

magma: E := EllipticCurve([1, 1, 0, -1696, 454711]);

$$y^2+xy=x^3+x^2-1696x+454711$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(130, 1501\right)$$ $$\hat{h}(P)$$ ≈ $1.3360777116365498721215527946$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(130, 1501\right)$$, $$\left(130, -1631\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$73689$$ = $$3 \cdot 7 \cdot 11^{2} \cdot 29$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-89286619979403$$ = $$-1 \cdot 3^{6} \cdot 7^{3} \cdot 11^{4} \cdot 29^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{36883367257}{6098396283}$$ = $$-1 \cdot 3^{-6} \cdot 7^{-3} \cdot 11^{2} \cdot 29^{-3} \cdot 673^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$1.3562574169569113433339619397\dots$$ Stable Faltings height: $$0.55695899269078782864664741371\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1.3360777116365498721215527946\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.49380120841808876207829746987\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$6$$  = $$2\cdot1\cdot1\cdot3$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 73689.2.a.r

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} - q^{4} - 2q^{5} - q^{6} - q^{7} - 3q^{8} + q^{9} - 2q^{10} + q^{12} - 2q^{13} - q^{14} + 2q^{15} - q^{16} + q^{17} + q^{18} + 3q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 155520 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$3.9585407312796183618263875630245071587$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$7$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3
$$11$$ $$1$$ $$IV$$ Additive -1 2 4 0
$$29$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary nonsplit ordinary nonsplit add ordinary ordinary ordinary ordinary split ordinary ss ordinary ordinary ordinary 2 1 3 1 - 1 1 1 1 2 1 1,1 1 1 1 0 0 0 0 - 0 0 0 0 0 0 0,0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 73689g consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.24563.1 $$\Z/2\Z$$ Not in database $6$ 6.0.122478216707.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.32019867.1 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.