Properties

Label 7360.z
Number of curves $1$
Conductor $7360$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 7360.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
7360.z1 7360n1 \([0, -1, 0, -7295, -237415]\) \(-670933008285184/32181715\) \(-2059629760\) \([]\) \(13120\) \(0.86035\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 7360.z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 7360.z do not have complex multiplication.

Modular form 7360.2.a.z

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} + 3 q^{7} + q^{9} - 6 q^{11} - 4 q^{13} + 2 q^{15} + 7 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display